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Chapter F08 — Least-squares and Eigenvalue Problems (LAPACK)

Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine Mark of

Name Introduction Purpose

FOSAEF 16 QR factorization of real  general rectangular matrix
(SGEQRF/DGEQRF)

FOSBAFF 16 Form all or part of orthogonal Q from QR factorization determined by
FOSAEF or FO8BEF (SORGQR/DORGQR)

FOBAGF 16 Apply orthogonal transformation determined by FOSAEF or FO8BEF
(SORMQR/DORMQR)

FOBAHF 16 LQ factorization of real  general  rectangular matrix
(SGELQF/DGELQF)

FO8AJF 16 Form all or part of orthogonal Q from LQ factorization determined by
FOSAHF (SORGLQ/DORGLQ)

FO8AKF 16 Apply orthogonal transformation determined by FOSAHF
(SORMLQ/DORMLQ)

FOBASF 16 QR factorization of complex general rectangular  matrix
(CGEQRF/ZGEQRF)

FOBATF 16 Form all or part of unitary Q from QR factorization determined by
FO08ASF or FO8BSF (CUNGQR/ZUNGQR)

FOSAUF 16 Apply unitary transformation determined by FO8ASF or FO8BSF
(CUNMQR/ZUNMQR)

FOBAVF 16 LQ factorization of complex general rectangular matrix
(CGELQF/ZGELQF)

FOBAWF 16 Form all or part of unitary Q from LQ factorization determined by
FO8AVF (CUNGLQ/ZUNGLQ)

FO8AXF 16 Apply  unitary  transformation  determined by FO8AVF
(CUNMLQ/ZUNMLQ)

FOSBEF 16 Form all or part of orthogonal Q from QR factorization determined by
FOS8AEF or FOS8BEF (SORGQR/DORGQR)

FO8BSF 16 Form all or part of unitary @ from QR factorization determined by
FO8ASF or FO8BSF (CUNGQR/ZUNGQR)

FOSFEF 16 Orthogonal reduction of real symmetric matrix to symmetric tridiagonal
form (SSYTRD/DSYTRD)

FOSFFF 16 Generate orthogonal transformation matrix from reduction to tridiago-
nal form determined by FOSFEF (SORGTR/DORGTR)

FO8FGF 16 Apply orthogonal transformation determined by FO8FEF
(SORMTR/DORMTR)

FO8FSF 16 Unitary reduction of complex Hermitian matrix to real symmetric

) tridiagonal form (CHETRD/ZHETRD)

FOSFTF 16 Generate unitary transformation matrix from reduction to tridiagonal
form determined by FOS8FSF (CUNGTR/ZUNGTR)

FOSFUF 16 Apply unitary transformation matrix determined by FO8FSF
(CUNMTR/ZUNMTR)

FO8GEF 16 Orthogonal reduction of real symmetric matrix to symmetric tridiagonal
form, packed storage (SSPTRD/DSPTRD)

FO8GFF 16 Generate orthogonal transformation matrix from reduction to tridiago-
nal form determined by FOSGEF (SOPGTR/DOPGTR)

FO8GGF 16 Apply orthogonal transformation determined by FO8GEF
(SOPMTR/DOPMTR)

FO8GSF 16 Unitary reduction of complex Hermitian matrix to real symmetric

tridiagonal form, packed storage (CHPTRD/ZHPTRD)



FO8GTF
FO8GUF
FOSHEF
FO8HSF

FO8JEF

FO8BJFF

FO8JGF

FO08JJF
FO8JKF

FO8JSF
FO8JUF

FO8JXF
FOBKEF
FO8KFF
FO8KGF
FO8KSF
FO8KTF
FO8KUF
FO8SMEF
FO8BMSF
FO8NEF
FOSNFF
FO8NGF

FOSNHF
FO8NJF

FO8NSF

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16
16

16

Generate unitary transformation matrix from reduction to tridiagonal
form determined by FO8GSF (CUPGTR/ZUPGTR)

Apply unitary transformation matrix determined by FO08GSF
(CUPMTR/ZUPMTR)

Orthogonal reduction of real symmetric band matrix to symmetric
tridiagonal form (SSBTRD/DBSTRD)

Unitary reduction of complex Hermitian band matrix to real symmetric
tridiagonal form (CHBTRD/ZHBTRD)

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix,
reduced from real symmetric matrix using implicit QL or QR
(SSTEQR/DSTEQR)

All eigenvalues of real symmetric tridiagonal matrix, root-free variant of
QL or QR (SSTERF/DSTERF)

All eigenvalues and eigenvectors of real symmetric positive definite
tridiagonal matrix, reduced from real symmetric positive definite matrix
(SPTEQR/DPTEQR)

Selected eigenvalues of real symmetric tridiagonal matrix by bisection
(SSTEBZ/DSTEBZ)

Selected eigenvectors of real symmetric tridiagonal matrix by inverse
iteration, storing eigenvectors in real array (SSTEIN/DSTEIN)

All eigenvalues and eigenvectors of real symmetric tridiagonal matrix,
reduced from complex Hermitian matrix, using implicit QL or QR
(CSTEQR/ZSTEQR)

All eigenvalues and eigenvectors of real symmetric positive definite
tridiagonal matrix, reduced from complex Hermitian positive definite
matrix (CPTEQR/ZPTEQR)

Selected eigenvectors of real symmetric tridiagonal matrix by inverse
iteration, storing eigenvectors in complex array (CSTEIN/ZSTEIN)
Orthogonal reduction of real general rectangular matrix to bidiagonal
form (SGEBRD/DGEBRD)

Generate orthogonal transformation matrices from reduction to bidiag-
onal form determined by FOSKEF (SORGBR/DORGBR)

Apply orthogonal transformations from reduction to bidiagonal form
determined by FOSKEF (SORMBR/DORMBR)

Unitary reduction of complex general rectangular matrix to bidiagonal
form (CGEBRD/ZGEBRD)

Generate unitary transformation matrices from reduction to bidiagonal
form determined by FOS8KSF (CUNGBR/ZUNGBR) '

Apply unitary transformations from reduction to bidiagonal form deter-
mined by FOSKSF (CUNMBR/ZUNMBR)

SVD of real bidiagonal matrix reduced from real general matrix
(SBDSQR/DBDSQR)

SVD of real bidiagonal matrix reduced from complex general matrix
(CBDSQR/ZBDSQR)

Orthogonal reduction of real general matrix to upper Hessenberg form
(SGEHRD/DGEHRD)

Generate orthogonal transformation matrix from reduction to Hessen-
berg form determined by FOSNEF (SORGHR/DORGHR)

Apply orthogonal transformation matrix from reduction to Hessenberg
form determined by FOSNEF (SORMHR/DORMHR)

Balance real general matrix (SGEBAL/DGEBAL)

Transform eigenvectors of real balanced matrix to those of original
matrix supplied to FOSNHF (SGEBAK/DGEBAK)

Unitary reduction of complex general matrix to upper Hessenberg form

(CGEHRD/ZGEHRD)



FO8NTF
FO8BNUF

FOSNVF
FOSNWF

FO8PEF

FO8PKF

FO8PSF

FO8PXF

FOBQFF

FO8QGF

FO8QHF

FO8QKF

FO8QLF

FO8QTF

FO8QUF

FO8QVF

FO8QXF

FO8QYF

FO8SEF

FO8SSF

FOBTEF

FO8TSF
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Generate unitary transformation matrix from reduction to Hessenberg
form determined by FOSNSF (CUNGHR/ZUNGHR)

Apply unitary transformation matrix from reduction to Hessenberg form
determined by FO8NSF (CUNMHR/ZUNMHR)

Balance complex general matrix (CGEBAL/ZGEBAL)

Transform eigenvectors of complex balanced matrix to those of original
matrix supplied to FOSNVF (CGEBAK/ZGEBAK)

Eigenvalues and Schur factorization of real upper Hessenberg matrix
reduced from real general matrix (SHSEQR/DHSEQR)

Selected right and/or left eigenvectors of real upper Hessenberg matrix
by inverse iteration (SHSEIN/DHSEIN)

Eigenvalues and Schur factorization of complex upper Hessenberg matrix
reduced from complex general matrix (CHSEQR/ZHSEQR)

Selected right and/or left eigenvectors of complex upper Hessenberg
matrix by inverse iteration (CHSEIN/ZHSEIN)

Reorder Schur factorization of real matrix using orthogonal similarity
transformation (STREXC/DTREXC)

Reorder Schur factorization of real matrix, form orthonormal basis
of right invariant subspace for selected eigenvalues, with estimates of
sensitivities (STRSEN/DTRSEN)

Solve real Sylvester matrix equation AX + XB = C, A and B are upper
quasi-triangular or transposes (STRSYL/DTRSYL)

Left and right eigenvectors of a real upper quasi-triangular matrix
(STREVC/DTREVC)

Estimates of sensitivities of selected eigenvalues and eigenvectors of real
upper quasi-triangular matrix (STRSNA/DTRSNA)

Reorder Schur factorization of complex matrix using unitary similarity
transformation (CTREXC/ZTREXC)

Reorder Schur factorization of complex matrix, form orthonormal basis
of right invariant subspace for selected eigenvalues, with estimates of
sensitivities (CTRSEN/ZTRSEN)

Solve complex Sylvester matrix equation AX + XB = C, A and B are
upper triangular or conjugate-transposes (CTRSYL/ZTRSYL)

Left and right eigenvectors of a complex upper triangular matrix
(CTREVC/ZTREVC)

Estimates of sensitivities of selected eigenvalues and eigenvectors of
complex upper triangular matrix (CTRSNA/ZTRSNA)

Reduction to standard form of real symmetric-definite generalized
eigenproblem Az = ABz, ABzx = Az or BAx = Az, B factorized by
FO7FDF (SSYGST/DSYGST)

Reduction to standard form of complex Hermitian-definite generalized
eigenproblem Az = ABz, ABzx = Az or BAr = Az, B factorized by
FO7FRF (CHEGST/ZHEGST)

Reduction to standard form of real symmetric-definite generalized
eigenproblem Az = ABz, ABz = Az or BAz = Az, packed storage,
B factorized by FO7GDF (SSPGST/DSPGST)

Reduction to standard form of complex Hermitian-definite generalized
eigenproblem Az = ABz, ABz = Az or BAz = Az, packed storage, B
factorized by FOTGRF (CHPGST/ZHPGST)
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1 Scope of the Chapter

This chapter provides routines for the solution of linear least-squares problems, eigenvalue problems and
singular value problems, as well as associated computations. It provides routines for:

- solution of linear least-squares problems

- solution of symmetric eigenvalue problems

- solution of nonsymmetric eigenvalue problems

- solution of singular value problems

- solution of generalized symmetric-definite eigenvalue problems

— matrix factorizations associated with the above problems

- estimating condition numbers of eigenvalues and eigenvectors

- estimating the rank of a matrix

— solution of the Sylvester matrix equation

Routines are provided for both real and complez data.

For a general introduction to the solution of linear least-squares problems, you should turn first to the
F04 Chapter Introduction. The decision trees, at the end of the F04 Chapter Introduction, direct you to
the most appropriate routines in Chapter F04 or Chapter F08. Chapter F04 contains Black Boz routines
which enable standard linear least-squares problems to be solved by a call to a single routine.

For a general introduction to eigenvalue and singular value problems, you should turn first to the F02
Chapter Introduction. The decision trees, at the end of the F02 Chapter Introduction, direct you to the
most appropriate routines in Chapter F02. Chapter F02 contains Black Boz routines which enable some
standard types of problem to be solved by a call to a single routine. Where possible, routines in Chapter
F02 call Chapter F08 routines to perform the necessary computational tasks.

The routines in this chapter (F08) handle only dense, band and Hessenberg matrices (not matrices with
more specialized structures, or general sparse matrices). The decision trees in Section 4 direct you to the
most appropriate routines in Chapter F08.

The routines in this chapter have all been derived from the LAPACK project (see Anderson et al.
[1]). They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

It is not expected that every user will need to read all of the following sections, but rather will pick out
those sections relevant to their particular problem.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of linear least-squares problems,
eigenvalue and singular value problems. Consult a standard textbook for a more thorough discussion, for
example Golub and Van Loan [4].

2.1 Linear Least-squares Problems

The linear least-squares problem is
minimize||b — Az||,, (1)
T

where A is an m by n matrix, b is a given m element vector and z is the n element solution vector.

In the most usual case m > n and rank(A) = n, so that A has full rank and in this case the solution
to problem (1) is unique; the problem is also referred to as finding a least-squares solution to an
overdetermined system of linear equations.

When m < n and rank(A) = m, there are an infinite number of solutions z which exactly satisfy
b— Az = 0. In this case it is often useful to find the unique solution z which minimizes ||z||,, and
the problem is referred to as finding a minimum-norm solution to an underdetermined system of linear
equations.

[NP3086/18] F08.3
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In the general case when we may have rank(A) < min(m, n) - in other words, A may be rank-deficient —
we seek the minimum-norm least-squares solution z which minimizes both ||z||, and ||b — Az||,.

This chapter (F08) contains computational routines that can be combined with routines in Chapter F07
to solve these linear least-squares problems. Chapter F0O4 contains Black Box routines to solve these
linear least-squares problems in standard cases. The next two sections discuss the factorizations that can
be used in the solution of linear least-squares problems.

2.2 Orthogonal Factorizations and Least-squares Problems

A number of routines are provided for factorizing a general rectangular m by n matrix A, as the product
of an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal) matrix.

A real matrix Q is orthogonal if QTQ = I; a complex matrix Q is unitary if Q¥Q = I. Orthogonal or
unitary matrices have the important property that they leave the two-norm of a vector invariant, so that

llz|l, = 1|Qzll, if Q is orthogonal or unitary.

They help to maintain numerical stability because they do not amplify rounding errors.

Orthogonal factorizations are used in the solution of linear least-squares problems. They may also be
used to perform preliminary steps in the solution of eigenvalue or singular value problems, and are useful
tools in the solution of a number of other problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by
A=Q(}§), if m>n,

where R is an n by n upper triangular matrix and @ is an m by m orthogonal (or unitary) matrix. If A
is of full rank n, then R is non-singular. It is sometimes convenient to write the factorization as

=@ @)(f)

A = QIR’

where @, consists of the first n columns of @, and Q, the remaining m — n columns.

which reduces to

If m < n, R is trapezoidal, and the factorization can be written
A=Q (R, Ry),if m<n,

where R, is upper triangular and R, is rectangular.

The QR factorization can be used to solve the linear least-squares problem (1) when m > n and A is of
full rank, since
¢, — Rz

Ccy !

lIb = Az|l, = 1QTb — QT Az|l, =

()~ @)

and ¢, is an n element vector. Then z is the solution of the upper triangular system

where

Rz =c,.

r=b—Az‘:Q(co>.
2

The residual sum of squares ||7||2 may be computed without forming r explicitly, since

lirll, = 116 = Azll; = licall.-

The residual vector r is given by

F08.4 [NP3086/18]
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2.2.2 LQ factorization
The LQ factorization is given by

A=(L 0)Q=(L 0)(8;) = 1Q,, ifm<n,

where L is m by m lower triangular, Q is n by n orthogonal (or unitary), @, consists of the first m rows
of @, and @, the remaining n — m rows.

The LQ factorization of A is essentially the same as the QR factorization of AT (AH if A is complex),
since

A=(L O)Q®AT=QT(L0T>.

The LQ factorization may be used to find a minimum norm solution of an underdetermined system of
linear equations Az = b where A is m by n with m < n and has rank m. The solution is given by

z=Q7 (L;lb) '

2.2.3 QR factorization with column pivoting

To solve a linear least-squares problem (1) when A is not of full rank, or the rank of A is in doubt, we
can perform either a QR factorization with column pivoting or a singular value decomposition.

The QR factorization with column pivoting is given by
A:Q(g)PT, m>n,

where Q and R are as before and P is a permutation matrix, chosen (in general) so that

[P0l 2 Irgal = .- 2 |7l

and moreover, for each k,
|rkk| Z ”RkJ,JHZ forj = k + 1, N (N

_ (R Ry
= R
where R, is the leading k by k upper triangular submatrix of R then, in exact arithmetic, if rank(A4) = k,

the whole of the submatrix R,, in rows and columns k+ 1 to n would be zero. In numerical computation,
the aim must be to determine an index k, such that the leading submatrix R,, is well-conditioned, and

R,, is negligible, so that
R= Ry R\ (Bu Ris
0 Ry~ \ O 0 )"

Then k is the effective rank of A. See Golub and Van Loan [4] for a further discussion of numerical rank
determination.

If we put

The so-called basic solution to the linear least-squares problem (1) can be obtained from this factorization
as
_p(Rué
z= P( 0 ,
where ¢, consists of just the first k elements of ¢ = QTb.

2.3 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by n matrix A is given by

A=UZVT, (A=UZV¥ inthe complex case)

[NP3086/18] F08.5



Introduction - F08 F08 - Least-squares and Eigenvalue Problems (LAPACK)

where U and V are orthogonal (unitary) and I is an m by n diagonal matrix with real diagonal elements,
o;, such that

012052 Opin(imn) 2 0-
The o; are the singular values of A and the first min(m, n) columns of U and V are the left and right
singular vectors of A. The singular values and singular vectors satisfy

Av; = o;u; and ATy, = o,v; (or Ay, = o,
where u; and v; are the ith columns of U and V respectively.
The computation proceeds in the following stages.

(1) The matrix A is reduced to bidiagonal form A = U,BVT if Aisreal (A=U \BVH if A is complex),
where U, and V, are orthogonal (unitary if A is complex), and B is real and upper bidiagonal when
m < n and lower bidiagonal when m < n, so that B is nonzero only on the main diagonal and
cither on the first superdiagonal (if m > n) or the first subdiagonal (if m < n).

(2) The SVD of the bidiagonal matrix B is computed as B = U,XVJ, where U, and V, are orthogonal
and ¥ is diagonal as described above. The singular vectors of A are then U = U,U, and V = V} V.

If m > n, it may be more efficient to first perform a QR factorization of A, and then compute the SVD
of the n by n matrix R, since if A = QR and R = USVT, then the SVD of A is given by 4 = (QU)TVT.

Similarly, if m < n, it may be more efficient to first perform an LQ factorization of A.

2.4 The Singular Value Decomposition and Least-squares Problems

The SVD may be used to find a minimum norm solution to a (possibly) rank-deficient linear least-squares
problem (1). The effective rank, k, of A can be determined as the number of singular values which exceed
a suitable threshold. Let ¥ be the leading k by k submatrix of ¥, and V be the matrix consisting of the
first k columns of V. Then the solution is given by

T = Vfl—lél,

where ¢, consists of the first k elements of c = U To=UTUTs.

2.5 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, ), and corresponding eigenvectors, z # 0,
such that
Az =Xz, A= AT, where A is real.

For the Hermitian eigenvalue problem we have
Az=)Xz, A= AH  where A is complex.

For both problems the eigenvalues A are real.

When all eigenvalues and eigenvectors have been computed, we write
A=ZAZT (or A= ZAZ® if complex),

where A is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal (or
unitary) matrix whose columns are the eigenvectors. This is the classical spectral factorization of A.

The basic task of the symmetric eigenproblem routines is to compute values of A and, optionally,
corresponding vectors z for a given matrix A. This computation proceeds in the following stages.

(1) The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T. If A is
real symmetric this decomposition is A = QTQT with Q orthogonal and T symmetric tridiagonal.
If A is complex Hermitian, the decomposition is A = QTQ* with Q unitary and T, as before, real
symmetric tridiagonal.

(2) Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix T are computed. If all
eigenvalues and eigenvectors are computed, this is equivalent to factorizing T as T' = SAST, where
S is orthogonal and A is diagonal. The diagonal entries of A are the eigenvalues of T, which are
also the eigenvalues of A, and the columns of S are the eigenvectors of T'; the eigenvectors of A are
the columns of Z = QS, so that A = ZAZT (ZAZ¥ when A is complex Hermitian).

F08.6 [NP3086/18]



F08 - Least-squares and Eigenvalue Problems (LAPACK) Introduction - F08

2.6 Generalized Symmetric-Definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az = ABz, ABz = Az,
and BAz = Az, where A and B are real symmetric or complex Hermitian and B is positive-definite.
Each of these problems can be reduced to a standard symmetric eigenvalue problem, using a Cholesky
factorization of B as either B = LLT or B =UTU (LL¥ or U¥U in the Hermitian case).

With B = LLT, we have

Az=ABz = (LT'ALT)(LT2) = AL 2).
Hence the eigenvalues of Az = ABz are those of Cy = Ay, where C is the symmetric matrix C = L~YALT
and y = LTz. In the complex case C is Hermitian with C = L™ YAL H andy = L¥:.

Table 1 summarizes how each of the three types of problem may be reduced to standard form Cy = Ay,
and how the eigenvectors z of the original problem may be recovered from the eigenvectors y of the
reduced problem. The table applies to real problems; for complex problems, transposed matrices must
be replaced by conjugate-transposes.

Type of problem Factorization of B | Reduction Recovery of
eigenvectors
1. | Az = )\Bz B=1LL" C=L1AL"T z=L"Ty
B=UTU Cc=U"TAU! z=U"ly
2. | ABz= )z B=LLT C=LTAL z=L"Ty
B=UTU Cc=UvAUT z=U"y
3. | BAz= )z B=1LL" C=LTAL z=1Ly
B=UTU C =UAUT z=UTy
Table 1

Reduction of generalized symmetric-definite eigenproblems to standard problems

When the generalized symmetric-definite problem has been reduced to the corresponding standard
problem Cy = My, this may then be solved using the routines described in the previous section. No
special routines are needed to recover the eigenvectors z of the generalized problem from the eigenvectors
y of the standard problem, because these computations are simple applications of Level 2 or Level 3
BLAS (see Chapter F06).

2.7 Packed Storage for Symmetric Matrices

Routines which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower triangle
is stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements
of the array can be used to store other useful data. However, that is not always convenient, and if it is
important to economize on storage, the upper or lower triangle can be stored in a one-dimensional array
of length n(n + 1)/2; that is, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.

Routines designed for packed storage are usually less efficient, especially on high-performance computers,
so there is a trade-off between storage and efficiency.

2.8 Band Symmetric Matrices

A band matrix is one whose elements are confined to a relatively small number of sub-diagonals or super-
diagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to reduce
the amount of work and storage required. The storage scheme for symmetric band matrices is described
in Section 3.3.

2.9 Nonsymmetric Eigenvalue Problems

The nonsymmetric eigenvalue problem is to find the eigenvalues, A, and corresponding eigenvectors, v # 0,

such that
Av = dv.
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More precisely, a vector v as just defined 1s called a right eigenvector of A, and a vector u # 0 satisfying
uTA =T (uA=Xu¥ when uis complex)

is called a left eigenvector of A.
A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs.

This problem can be solved via the Schur factorization of A, defined in the real case as
A=2T2Z",

where Z is an orthogonal matrix and T is an upper quasi-triangular matrix with 1 by 1 and 2 by 2
diagonal blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the

complex case the Schur factorization is
A=2TZH,

where Z is unitary and T is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 < k < n), the first k columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal of T'.
Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather
than eigenvectors. It is possible to order the Schur factorization so that any desired set of k eigenvalues
occupy the k leading positions on the diagonal of T'.

The two basic tasks of the nonsymmetric eigenvalue routines are to compute, for a given matrix 4, all n
values of A and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and the Schur
factorization.

These two basic tasks can be performed in the following stages.

(1) A general matrix A is reduced to upper Hessenberg form H which is zero below the first subdiagonal.
The reduction may be written A = QH QT with Q orthogonal if A is real, or A = QH QY with Q
unitary if A is complex.

(2) The upper Hessenberg matrix H is reduced to Schur form T, giving the Schur factorization
H = STST (for H real) or H = STSH (for H complex). The matrix S (the Schur vectors of
H) may optionally be computed as well. Alternatively S may be postmultiplied into the matrix
Q determined in stage 1, to give the matrix Z = QS, the Schur vectors of A. The eigenvalues are
obtained from the diagonal elements or diagonal blocks of T'.

(3) Given the eigenvalues, the eigenvectors may be computed in two different ways. Inverse iteration can
be performed on H to compute the eigenvectors of H, and then the eigenvectors can be multiplied
by the matrix Q in order to transform them to eigenvectors of A. Alternatively the eigenvectors of
T can be computed, and optionally transformed to those of H or A if the matrix S or Z is supplied.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix. This
is discussed further in Section 2.11.6 below.

2.10 The Sylvester Equation

The Sylvester equation is a matrix equation of the form
AX+XB=C,

where A, B, and C are given matrices with A being m by m, B an n by n matrix and C, and the solution
matrix X, m by n matrices. The solution of a special case of this equation occurs in the computation of
the condition number for an invariant subspace, but a combination of routines in this chapter allows the
solution of the general Sylvester equation.

2.11 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data, on the solution to the problem. A number of the routines in this chapter
return information, such as condition numbers, that allow these effects to be assessed. First we discuss
some notation used in the error bounds of later sections.
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The bounds usually contain the factor p(n) (or p(m, n)), which grows as a function of the matrix dimension
n (or matrix dimensions m and n). It measures how errors can grow as a function of the matrix dimension,
and represents a potentially different function for each problem. In practice, it usually grows just linearly;
p(n) < 10n is often true, although generally only much weaker bounds can be actually proved. We
normally describe p(n) as a ‘modestly growing’ function of n. For detailed derivations of various p(n),

see [4] and [6).
For linear equation (see Chapter F07) and least-squares solvers, we consider bounds on the relative error
||z —#||/||z|| in the computed solution £, where  is the true solution. For eigenvalue problems we consider

bounds on the error |\; — A;| in the ith computed eigenvalue );, where J; is the true ith eigenvalue. For
singular value problems we similarly consider bounds |o; — ¢;|.

Bounding the error in computed eigenvectors and singular vectors 9; is more subtle because these vectors
are not unique: even though we restrict ||4;||, = 1 and ||v;||, = 1, we may still multiply them by arbitrary
constants of absolute value 1. So to avoid ambiguity we bound the angular difference between 9; and the
true vector v;, so that
6(v;,9;) = acute angle between v; and 9, )
= arccos |v,H o).

When 6(v;, ;) is small, we can choose a constant  with absolute value 1 so that |lav; — ;]| = 0(v;, ;).

In addition to bounds for individual eigenvectors, bounds can be obtained for the spaces spanned
by collections of eigenvectors. These may be much more accurately determined than the individual
eigenvectors which span them. These spaces are called invariant subspaces in the case of eigenvectors,
because if v is any vector in the space, Av is also in the space, where A is the matrix. Again, we will use
angle to measure the difference between a computed space S and the true space S:

6(S,5) = acute angle between S and S

= max min f(s,§) or max min 6(s,s
max min 0(s,$) or max min (s, $) (3)
s£035#£0 §£08#0

6(S,S) may be computed as follows. Let S be a matrix whose columns are orthonormal and span S.
Similarly let S be an orthonormal matrix with columns spanning S. Then
8(S, S) = arccos o, (SH S).

Finally, we remark on the accuracy of the bounds when they are large. Relative errors like || — z||/||=||
and angular errors like 8(9;, v;) are only of interest when they are much less than 1. Some stated bounds
are not strictly true when they are close to 1, but rigorous bounds are much more complicated and supply
little extra information in the interesting case of small errors. These bounds are indicated by using the
symbol X, or ‘approximately less than’, instead of the usual <. Thus, when these bounds are close to
1 or greater, they indicate that the computed answer may have no significant digits at all, but do not
otherwise bound the error.

2.11.1 Least-squares problems

The conventional error analysis of linear least-squares problems goes as follows. The problem is to find
the z minimizing ||Az — b||,. Let & be the solution computed using one of the methods described above.
We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and
has full rank.

Then the computed solution # has a small normwise backward error. In other words £ minimizes

I(A+ E)z — (b+ f)||,, where
LTV
(||A||2’ nbn) < p(n)

and p(n) is a modestly growing function of n. Let ky(A) = o, (4)/onin(4), p = ||Az — b]|,, and
sin(#) = p/||b|,- Then if p(n)e is small enough, the error # — z is bounded by

||1'—i’||2 n)e 2"2(14) a 2
L, ~ P {cos(o> + tan(6) Z(A)}'
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If A is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See [4] for error bounds in this case, as well as for the underdetermined

case.

The solution of the overdetermined, full-rank problem may also be characterized as the solution of the

linear system of equations
I A\[(r\ _[b
AT 0)\z) ~\0)

By solving this linear system (see Chapter F07) componentwise error bounds can also be obtained [2].

2.11.2 The singular value decomposition

The usual error analysis of the SVD algorithm is as follows [4].

The computed SVD, UsvT,is nearly the exact SVD of A+ E, i.e., A+E = (17+6U)2(V+§V) is the true
SVD, so that U + 6U and V + §V are both orthogonal, where || E||,/[|All; < p(m, n)e, [|16U]] < p(m,n)e,
and ||6V|| < p(m, n)e. Here p(m,n) is a modestly growing function of m and n. Each computed singular
value &; differs from the true o; by an amount satisfying the bound

|6; — o;] < p(m,n)ea,.

Thus large singular values (those near o) are computed to high relative accuracy and small ones may
not be.

The angular difference between the computed left singular vector @; and the true wu; satisfies the
approximate bound
A
0('&,‘,“") 5 p(m7 n)f“ ”2
gap;

where

gap; = min |o; — ;|
is the absolute gap between o; and the nearest other singular value. Thus, if o; is close to other singular
values, its corresponding singular vector u; may be inaccurate. The same bound applies to the computed
right singular vector 9; and the true vector v;. The gaps may be easily obtained from the computed
singular values.

Let S be the space spanned by a collection of computed left singular vectors {a;,7 € I}, where I is a
subset of the integers from 1 to n. Let S be the corresponding true space. Then

0(5‘ S) < P(mv")qullz
’ ~ gap;

where

gap; = min{|o; —o;| fori € I, j ¢ I}
is the absolute gap between the singular values in I and the nearest other singular value. Thus, a cluster
of close singular values which is far away from any other singular value may have a well determined space
S even if its individual singular vectors are ill-conditioned. The same bound applies to a set of right
singular vectors {9;,i € I}.

In the special case of bidiagonal matrices, the singular values and singular vectors may be computed
much more accurately [3]. A bidiagonal matrix B has nonzero entries only on the main diagonal and
the diagonal immediately above it (or immediately below it). Reduction of a dense matrix to bidiagonal
form B can introduce additional errors, so the following bounds for the bidiagonal case do not apply to
the dense case.

Using the routines in this chapter, each computed singular value of a bidiagonal matrix is accurate to
nearly full relative accuracy, no matter how tiny it is, so that

|6; — ;] < p(m,n)eo;.

The computed left singular vector @; has an angular error at most about

. p(m,n)e
(. u)  ——=—
(4, uw) £ relgap;
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where
relgap; = rjr;i?lvi - 0;l/(0; + ;)

is the relative gap between o, and the nearest other singular value. The same bound applies to the right
singular vector 9; and v;. Since the relative gap may be much larger than the absolute gap, this error
bound may be much smaller than the previous one. The relative gaps may be easily obtained from the
computed singular values.

2.11.3 The symmetric eigenproblem
The usual error analysis of the symmetric eigenproblem is as follows [5].

The computed eigendecomposition ZAZT is nearly the exact eigendecomposition of A+ E,ie, A+ E=
(Z+62)A(Z+6Z)T is the true eigendecomposition so that Z+6Z is orthogonal, where 1ENlL/11Ally < p(n)e
and ||6Z||, < p(n)e and p(n) is a modestly growing function of n. Each computed eigenvalue A; differs
from the true A; by an amount satisfying the bound

1A = X1 < p(r)ellAll,.

Thus large eigenvalues (those near max|);| = ||4||,) are computed to high relative accuracy and small
1

ones may not be.

The angular difference between the computed unit eigenvector z; and the true z; satisfies the approximate

bound
0(2,',2;') 's P(")ellAuz
gap;

if p(n)e is small enough, where
gap; = min|}; — ;|

is the absolute gap between ); and the nearest other eigenvalue. Thus, if ), is close to other eigenvalues,
its corresponding eigenvector z; may be inaccurate. The gaps may be easily obtained from the computed
eigenvalues.

Let S be the invariant subspace spanned by a collection of eigenvectors {2;,i € I}, where I is a subset of
the integers from 1 to n. Let S be the corresponding true subspace. Then

p(n)ellAll

9(5,5) <
($,9) 2ap;

where
gap; = min{|); — A;|fori € 1, j ¢ I}

is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of close
eigenvalues which is far away from any other eigenvalue may have a well determined invariant subspace
S even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix T, routines in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson et al. [1] for further details.

2.11.4 The generalized symmetric-definite eigenproblem
The three types of problem to be considered are A — AB, AB — AI and BA — Al. In each case A and
B are real symmetric (or complex Hermitian) and B is positive-definite. We consider each case in turn,
assuming that routines in this chapter are used to transform the generalized problem to the standard
symmetric problem, followed by the solution of the the symmetric problem. In all cases

gap; = TJH;PM. =l

is the absolute gap between A; and the nearest other eigenvalue.
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(1) A — AB. The computed eigenvalues ); can differ from the true eigenvalues }; by an amount
1A = Xl £ p(n)el| B~ IAll-
The angular difference between the computed eigenvector ; and the true eigenvector z; is

p(n)ell B~ 5l Allo(x5(B))*/? ‘
gap;

0(2;,2) £

(2) AB — M or BA — M. The computed eigenvalues ); can differ from the true eigenvalues A; by an
amount

I\ = Xl < p(n)ell Bllol|All,-

The angular difference between the computed eigenvector Z; and the true eigenvector z; is

8(z;, 2,) q(n)ellB||2]|A||2(n2(B))1/2.
R gap;

These error bounds are large when B is ill-conditioned with respect to inversion (x,(B) is large). It is
often the case that the eigenvalues and eigenvectors are much better conditioned than indicated here.
One way to get tighter bounds is effective when the diagonal entries of B differ widely in magnitude, as
for example with a graded matriz.

(1) A-AB. Let D = diag(b;'/?, ..., b;1/?) be a diagonal matrix. Then replace B by DBD and A by
DAD in the above bounds.
(2) AB — Al or BA— Al Let D = diag(b}/?,...,b71/?) be a diagonal matrix. Then replace B by

<y %n

DBD and A by D"'AD™! in the above bounds.

Further details can be found in Anderson et al. [1].

2.11.5 The nonsymmetric eigenproblem

The nonsymmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem. In
this section, we just summarize the bounds. Further details can be found in Anderson et al. [1].

We let ); be the ith computed eigenvalue and ); the ith true eigenvalue. Let 9; be the corresponding
computed right eigenvector, and v; the true right eigenvector (so Av; = A\;v;). If I is a subset of the
integers from 1 to n, we let A; denote the average of the selected eigenvalues: A; = (Z A/ (Z 1), and

iel i€l
similarly for ;. We also let S; denote the subspace spanned by {v;,i € I}; it is called a right invariant
subspace because if v is any vector in S; then Av is also in S;. S; is the corresponding computed
subspace.

The algorithms for the nonsymmetric eigenproblem are normwise backward stable: they compute the
exact eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices A + E, where
I|E|| < p(n)e||A||. Some of the bounds are stated in terms of || E||, and others in terms of || E||; one may
use p(n)e for either quantity.

Routines are provided so that, for each (};, ¥;) pair the two values s; and sep;, or for a selected subset
I of eigenvalues the values s; and sep; can be obtained, for which the error bounds in Table 2 are true
for sufficiently small || E||, (which is why they are called asymptotic):

Simple eigenvalue | |, — ;| < ||Ello/s;

Eigenvalue cluster | |A\; — A; S ||E|l,/s;
Eigenvector 0(9;,9,) X \|Ellp/sep;

1)

Invariant subspace | 8(S;,S;) < ||Ellg/sep;

Table 2
Asymptotic error bounds for the nonsymmetric eigenproblem
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If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small ||E||. The
global error bounds of Table 3 are guaranteed to hold for all || E||p < s x sep/4:

Simple eigenvalue | [A; = X;| < n||E||,/s; Holds for all £

Eigenvalue cluster | |A; — ;| < 2[|E|l,/s; Requires ||E||p < s; x sep;/4

Eigenvector 6(9;,9,) < arctan(2||E||g/(sep; — 4||E||p/s;)) | Requires ||E||p <'s; x sep; /4

Invariant subspace | 6(S;,S;) < arctan(2||E||g/(sep; — 4l|E|lp/s;)) | Requires ||E|lp < s; x sep; /4
Table 3

Global error bounds for the nonsymmetric eigenproblem

2.11.6 Balancing and condition

There are two preprocessing steps one may perform on a matrix A in order to make its eigenproblem
easier. The first is permutation, or reordering the rows and columns to make A more nearly upper
triangular (closer to Schur form): A’ = PAPT where P is a permutation matrix. If A’ is permutable
to upper triangular form (or close to it), then no floating-point operations (or very few) are needed to
reduce it to Schur form. The second is scaling by a diagonal matrix D to make the rows and columns of
A’ more nearly equal in norm: A” = DA'D™!. Scaling can make the matrix norm smaller with respect
to the eigenvalues, and so possibly reduce the inaccuracy contributed by roundoff (see Chapter, I1/11 of
[7]). We refer to these two operations as balancing.

Permuting has no effect on the condition numbers or their interpretation as described previously. Scaling,
however, does change their interpretation and further details can be found in Anderson et al. [1].

2.12 Block Algorithms

A number of the routines in this chapter use what is termed a block algorithm. This means that at
each major step of the algorithm a block of rows or columns is updated, and much of the computation
is performed by matrix-matrix operations on these blocks. The matrix-matrix operations are performed
by calls to the Level 3 BLAS (see Chapter F06), which are the key to achieving high performance on
many modern computers. In the case of the QR algorithm for reducing an upper Hessenberg matrix to
Schur form, a multishift strategy is used in order to improve performance. See Golub and Van Loan [4]
or Anderson et al. [1] for more about block algorithms and the multishift strategy.

The performance of a block algorithm varies to some extent with the blocksize - that is, the number
of rows or columns per block. This is a machine-dependent parameter, which is set to a suitable value
when the library is implemented on each range of machines. Users of the library do not normally need
to be aware of what value is being used. Different block sizes may be used for different routines. Values
in the range 16 to 64 are typical.

On more conventional machines there is often no advantage from using a block algorithm, and then the
routines use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the Level 2
BLAS (see Chapter F06 again).

The only situation in which a user needs some awareness of the block size is when it affects the amount
of workspace to be supplied to a particular routine. This is discussed in Section 3.4.3.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

3.1 Available Routines

The tables in the following subsections show the routines which are provided for performing different
computations on different types of matrices. Each entry in the table gives the NAG routine name, the
LAPACK single precision name, and the LAPACK double precision name (see Section 3.2).

For many computations it is necessary to call two or more routines in sequence some commonly required
sequences of routines are indicated below; an asterisk (*) against a routine name means that the sequence
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of calls is illustrated in the example program for that routine. (But remember that Black Box routines
for the same computations may be provided in Chapter F02 or Chapter F04.)

3.1.1 Orthogonal factorizations

Routines are provided for QR factorization (with and without column pivoting), and for L@ factorization
(without pivoting only), of a general real or complex rectangular matrix.

The factorization routines do not form the matrix Q explicitly, but represent it as a product of elementary
reflectors (see Section 3.3.6). Additional routines are provided to generate all or part of Q explicitly if
it is required, or to apply @ in its factored form to another matrix (specifically to compute one of the

matrix products QC, QTC,CcQor cQT-Q¥C or CQ¥ if complex).

Factorize | Factorize | Generate | Apply
without with Matrix Q | matrix Q
pivoting pivoting
QR factorization, | FOBAEF FO8SBEF FOSAFF FOSAGF
real matrices SGEQRF SGEQPF SORGQR SORMQR
DGEQRF DGEQPF DORGQR DORMQR
LQ factorization, | FOSBAHF FO8AJF FOBAKF
real matrices SGELQF SORGLQ SORMLQ
DGELQF DORGLQ DORMLQ
QR factorization, | FOBASF FO8BSF FOBATF FO8AUF
complex matrices | CGEQRF CGEQPF CUNGQR CUNMQR
ZGEQRF ZGEQPF ZUNMQR ZUNGQR
LQ factorization, | FOBAVF FOSAWF FOSAXF
complex matrices | CGELQF CUNGLQ CUNMQL
ZGELQF ZUNGLQ ZUNMLQ

To solve linear least-squares problems, as described in Section 2.2.1 or Section 2.2.3, routines based on
the QR factorization can be used:

real data, full-rank problem FOSAEF*, FO8AGF, FO6YJF
complex data, full-rank problem FO8ASF#, FOS8AUF, FO6ZJF
real data, rank-deficient problem FO8BEF*, FO8AGF, FO6YJF
complex data, rank-deficient problem FO8BSF*, FOSAUF, FO6ZJF

To find the minimum norm solution of under-determined systems of linear equations, as described in
Section 2.2.2, routines based on the L@ factorization can be used:

real data, full-rank problem FO8AHF*, FO6YJF, FOSAKF
complex data, full-rank problem FO8AVF*, FO6ZJF, FO8AXF

3.1.2 Singular value problems

Routines are provided to reduce a general real or complex rectangular matrix A to real bidiagonal form
B by an orthogonal transformation A = QBPT (or by a unitary transformation A = QBPH if A is
complex).

These routines do not form the matrix Q or P explicitly; additional routines are provided to generate all
or part of them, or to apply them to another matrix, as with the routines for orthogonal factorizations.
Explicit generation of @ or P is required before using the bidiagonal QR algorithm to compute left or
right singular vectors of A.

Further routines are provided to compute all or part of the singular value decomposition of a real
bidiagonal matrix; the same routines can be used to compute the singular value decomposition of a
real or complex matrix that has been reduced to bidiagonal form.
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Reduce to | Generate | Apply SVD of
bidiagonal | matrix ) | matrix Q@ | bidiagonal
form or PT or P form (QR
algorithm)
real matrices FOBKEF FO8BKFF FO8KGF FO8MEF
SGEBRD SORGBR SORMBR SBDSQR
DGEBRD DORGBR DORMBR DBDSQR
complex matrices | FOBKSF FO8KTF FO8KUF FO8MSF
CGEBRD CUNGBR CUNMBR CBDSQR
ZGEBRD ZUNGBR ZUNMBR ZBDSQR

To compute the singular values and vectors of a rectangular matrix, as described in Section 2.3, use the
following sequence of calls:

real matrix, singular values and vectors FOSKEF, FO8KFF*, FOSMEF
complex matrix, singular values and vectors FO8KSF, FO8KTF*, FO8MSF

To use the singular value decomposition to solve a linear least-squares problem, as described in Section
2.4, the following routines are required:

real data: FO8BKEF, FO8KGF, FOS8KFF, FOSMEF, FO6YAF
complex data: FO8KSF, FO8KUF, FOBKTF, FO8MSF, FO6ZAF

3.1.3 Symmetric eigenvalue problems

Routines are provided to reduce a real symmetric or complex Hermitian matrix A to real tridiagonal form
T by an orthogonal similarity transformation A = QTQ" (or by a unitary transformation A = QTQY if
A is complex). Different routines allow a full matrix A to be stored conventionally (see Section 3.3.1) or
in packed storage (see Section 3.3.2); or a band matrix to use band storage (see Section 3.3.3).

The routines for reducing full matrices do not form the matrix @ explicitly; additional routines are
provided to generate @, or to apply it to another matrix, as with the routines for orthogonal factorizations.
Explicit generation of @ is required before using the QR algorithm to find all the eigenvectors of A;
application of @ to another matrix is required after eigenvectors of T have been found by inverse iteration,
in order to transform them to eigenvectors of A.

The routines for reducing band matrices have an option to generate @ if required.
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Reduce to | Generate | Apply
tridiagonal | matrix Q | matrix
form
real symmetric matrices FOSFEF FOSFFF FO8FGF
SSYTRD SORGTR SORMTR
DSYTRD DORGTR DORMTR
real symmetric matrices FO8GEF FO8GFF FO8GGF
(packed storage) SSPTRD SOPGTR SOPMTR
DSPTRD DOPGTR DOPMTR
real symmetric band FO8SHEF
matrices SSBTRD
DSBTRD
complex Hermitian FO8FSF FOSFTF FOSFUF
matrices CHETRD CUNGTR CUNMTR
ZHETRD ZUNGTR ZUNMTR
complex Hermitian FO8GSF FO8GTF FO8GUF
matrices (packed storage) | CHPTRD CUPGTR CUPMTR
ZHPTRD ZUPGTR ZUPMTR
complex Hermitian band | FOSHSF
matrices CHBTRD
ZHBTRD

A variety of routines are provided to compute eigenvalues and eigenvectors of the real symmetric
tridiagonal matrix T, some computing all eigenvalues and eigenvectors, some computing selected
eigenvalues and eigenvectors. The same routines can be used to compute eigenvalues and eigenvectors of
a real symmetric or complex Hermitian matrix which has been reduced to tridiagonal form.

all eigenvalues | all eigenvalues | all eigenvalues | selected selected
and (root-free QR | and eigenvalues eigenvectors
eigenvectors algorithm) eigenvectors (bisection) (inverse
(QR (positive- iteration)
algorithm) definite)

real matrices FO8JEF FO8JFF FO8JGF FO8JJF FO8JKF
SSTEQR SSTERF SPTEQR SSTEBZ SSTEIN
DSTEQR DSTERF DPTEQR DSTEBZ DSTEIN

complex FO8JSF FO8JUF FO8JXF

matrices CSTEQR CPTEQR CSTEIN
ZSTEQR ZPTEQR ZSTEIN

The following sequences of calls may be used to compute various combinations of eigenvalues and
eigenvectors, as described in Section 2.5:

real symmetric matrix,

all eigenvalues and eigenvectors FOSFEF, FOSFFF*, FO8JEF

real symmetric matrix,

selected eigenvalues and eigenvectors FOSFEF, FO08JJF, FO8JKF, FO8FGF*
real symmetric matrix,

all eigenvalues and eigenvectors FOBHEF*, FOBJEF

complex Hermitian matrix,

all eigenvalues and eigenvectors FO8FSF, FO8FFF*, FO8JSF

complex Hermitian matrix,

selected eigenvalues and eigenvectors FO8FSF, F08JJF, FO8JXF, FO8BFUF*
complex Hermitian matrix,

all eigenvalues and eigenvectors FO8HSF#*, FO8JEF

To use packed storage, simply replace the FO8F- routines by the corresponding F08G- routines.

F08.16 [NP3086/18]



F08 - Least-squares and Eigenvalue Problems (LAPACK) Introduction - F08

3.1.4 Generalized symmetric-definite eigenvalue problems

Routines are provided for reducing each of the problems Az = ABz, ABx = Az or BAz = Az to an
equivalent standard eigenvalue problem Cy = MAy. Different routines allow the matrices to be stored
either conventionally or in packed storage. The positive-definite matrix B must first be factorized using

a routine from Chapter F07.

Reduce to Reduce to
standard standard problem
problem (packed storage)
real symmetric matrices FO8SEF FOSTEF
SSYGST SSPGST
DSYGST DSPGST
complex Hermitian matrices | FO8SSF FOSTSF
CHEGST CHPGST
ZHEGST ZHPGST

The equivalent standard problem can then be solved using the routines discussed in Section 3.1.3. For
example, to compute all the eigenvalues, the following routines must be called:

real symmetric-definite problem FO7FDF, FOS8SEF*, FOS8FEF, FO8JFF
real symmetric-definite problem,

packed storage FO7GDF, FOS8TEF*, FO8GEF, FO8JFF
complex Hermitian-definite problem FO7FRF, F08SSF*, FO8FSF, FO8JFF
complex Hermitian-definite problem,

packed storage FO7GRF, FO8TSF*, FO8GSF, FO8JFF

If eigenvectors are computed, the eigenvectors of the equivalent standard problem must be transformed
back to those of the original generalized problem, as indicated in Section 2.6; routines from Chapter F06
may be used for this.

3.1.5 Nonsymmetric eigenvalue problems

Routines are provided to reduce a general real or complex matrix A to upper Hessenberg form H by an
orthogonal similarity transformation A = QHQT (or by a unitary transformation A = QH QY if Ais
complex).

These routines do not form the matrix @ explicitly; additional routines are provided to generate @, or to
apply it to another matrix, as with the routines for orthogonal factorizations. Explicit generation of Q) is
required before using the QR algorithm on H to compute the Schur vectors; application of @ to another
matrix is needed after eigenvectors of H have been computed by inverse iteration, in order to transform
them to eigenvectors of A.

Routines are also provided to balance the matrix before reducing it to Hessenberg form, as described
in Section 2.11.6. Companion routines are required to transform Schur vectors or eigenvectors of the
balanced matrix to those of the original matrix.

Reduce to | Generate | Apply Balance Backtransform
Hessenberg | matrix Q | matrix Q vectors after
form balancing

real matrices FO8BNEF FO8NFF FO8NGF FOSNHF FO8NJF
SGEHRD SORGHR SORMHR SGEBAL SGEBAK
DGEHRD DORGHR DORMHR DGEBAL DGEBAK

complex matrices | FO8BNSF FOSNTF FOSNUF FOSRVF FOSNWF
CGEHRD CUNGHR CUNMHR CGEBAL CGEBAK
ZGEHRD ZUNGHR ZUNMHR ZGEBAL ZGEBAK

Routines are provided to compute the eigenvalues and all or part of the Schur factorization of an upper
Hessenberg matrix. Eigenvectors may be computed either from the upper Hessenberg form by inverse
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iteration, or from the Schur form by back-substitution; these approaches are equally satisfactory for
computing individual eigenvectors, but the latter may provide a more accurate basis for a subspace
spanned by several eigenvectors.

Additional routines estimate the sensitivities of computed eigenvalues and eigenvectors, as discussed in
Section 2.11.5.

Eigenvalues and | Eigenvectors Eigenvectors Sensitivities of
Schur from Hessenberg | from Schur eigenvalues and
factorization form (inverse factorization eigenvectors
(QR algorithm) | iteration)
real matrices FO8PEF FO8PKF FO8QKF FO8QLF
SHSEQR SHSEIN STREVC STRSNA
DHSEQR DHSEIN DTREVC DTRSNA
complex matrices | FO8PSF FO8PXF FO8QXF FO8QYF
CHSEQR CHSEIN CTREVC CTRSNA
ZHSEQR ZHSEIN ZTREVC ZTRSNA

Finally routines are provided for re-ordering the Schur factorization, so that eigenvalues appear in any
desired order on the diagonal of the Schur form. The routines FOSQFF and FO8QTF simply swap two
diagonal elements or blocks, and may need to be called repeatedly to achieve a desired order. The
routines FO8QGF and FO8QUF perform the whole re-ordering process for the important special case
where a specified cluster of eigenvalues is to appear at the top of the Schur form; if the Schur vectors
are re-ordered at the same time, they yield an orthonormal basis of the invariant subspace corresponding
to the specified cluster of eigenvalues. These routines can also compute the sensitivities of the cluster of
eigenvalues and the invariant subspace.

Reorder Schur factorization | Reorder Schur factorization,
find basis of invariant
subspace and estimate
sensitivities

real matrices FO8QFF FO8QGF

STREXC STRSEN

DTREXC DTRSEN

complex matrices | FO8QTF FO8QUF

CTREXC CTRSEN

ZTREXC ZTRSEN

The following sequences of calls may be used to compute various combinations of eigenvalues, Schur
vectors and eigenvectors, as described in Section 2.9:

real matrix, all eigenvalues

and Schur factorization FOSNEF, FOSNFF*, FOSPEF

real matrix, all eigenvalues

and selected eigenvectors FOSNEF, FOSPEF, FO8PKF, FO8NGF*

real matrix, all eigenvalues

and eigenvectors (with balancing) FOSKHF*, FOSNEF, FOSNFF, FOS8PEF, FO8PKF, FO8SNJF
complex matrix, all eigenvalues

and Schur factorization FO8SNSF, FOSNTF*, FO8PSF

complex matrix, all eigenvalues

and selected eigenvectors FO8SNSF, FO8PSF, FO8PXF, FO8SNUF*

complex matrix, all eigenvalues

and eigenvectors (with balancing) FOSNVF*, FOSNSF, FOSNTF, FO8PSF, FO8PXF, FOSNWF

3.1.6 Sylvester’s equation

Routines are provided to solve the real or complex Sylvester equation AX + XB = C, where A and B
are upper quasi-triangular if real, or upper triangular if complex. To solve the general form of Sylvester’s
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equation in which A and B are general square matrices, A and B must be reduced to upper (quasi-)
triangular form by the Schur factorization,using routines described in Section 3.1.5. For more details, see
the documents for the routines listed below.

solve Sylvester’s equation

real matrices FO8SQHF
STRSYL
DTRSYL

complex matrices | FO8QVF
CTRSYL
ZTRSYL

3.2 NAG Names and LAPACK Names

As well as the NAG routine name (beginning F08-), the tables in Section 3.1 show the LAPACK routine
names in both single and double precision.

The routines may be called either by their NAG names or by their LAPACK names. When using a single
precision implementation of the NAG Library, the single precision form of the LAPACK name must be
used (beginning with S- or C-); when using a double precision implementation of the NAG Library, the
double precision form of the LAPACK name must be used (beginning with D- or Z-).

References to FO8 routines in the Manual normally include the LAPACK single and double precision
names, in that order — for example FOSBAEF (SGEQRF/DGEQRF). The LAPACK routine names follow
a simple scheme (which is similar to that used for the BLAS in Chapter F06). Each name has the
structure XYYZZZ, where the components have the following meanings:

— the initial letter X indicates the data type (real or complex) and precision:

S - real, single precision (in Fortran 77, REAL)

D - real, double precision (in Fortran 77, DOUBLE PRECISION)

C - complex, single precision (in Fortran 77, COMPLEX)

Z - complex, double precision (in Fortran 77, COMPLEX*16 or DOUBLE COMPLEX)

- the 2nd and 3rd letters YY indicate the type of the matrix A (and in some cases its storage

scheme):
BD - bidiagonal
GE - general

HS - upper Hessenberg

OP - (real) orthogonal (packed storage)

UP - (complex) unitary (packed storage)

OR - (real) orthogonal

UN - (complex) unitary

PT - symmetric or Hermitian positive-definite tridiagonal
SB - (real) symmetric band

HB - (complex) Hermitian band

SP - symmetric (packed storage)

HP - Hermitian (packed storage)

ST - (real) symmetric tridiagonal

SY - symmetric

HE - Hermitian

TR - triangular (or quasi-triangular)

~ the last 3 letters ZZZ indicate the computation performed. For example, QRF is a QR
factorization.

Thus the routine SGEQRF performs a QR factorization of a real general matrix in a single precision
implementation of the Library; the corresponding routine in a double precision implementation is

DGEQRF.
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Some sections of the routine documents — Section 2 (Specification) and Section 9.1 (Example program)
~ print the LAPACK name in bolditalics, according to the NAG convention of using bold italics for
precision-dependent terms — for example, sgegrf, which should be interpreted as either SGEQRF (in
single precision) or DGEQRF (in double precision).

3.3 Matrix Storage Schemes

In this chapter the following storage schemes are used for matrices:

— conventional storage in a two-dimensional array;

- packed storage for symmetric or Hermitian matrices;

- packed storage for orthogonal or unitary matrices;

- band storage for band symmetric or Hermitian matrices;

- storage of bidiagonal, symmetric or Hermitian tridiagonal matrices in two one-dimensional arrays.

These storage schemes are compatible with those used in Chapter F06 and Chapter F07, but different
schemes for packed, band and tridiagonal storage are used in a few older routines in Chapter FO1, Chapter
F02, Chapter F03 and Chapter F04.

In the examples below, * indicates an array element which need not be set and is not referenced by
the routines. The examples illustrate only the relevant leading rows and columns of the arrays; array
arguments may of course have additional rows or columns, according to the usual rules for passing array
arguments in Fortran 77.

3.3.1 Conventional storage

The default scheme for storing matrices is the obvious one: a matrix A is stored in a two-dimensional
array A, with matrix element a;; stored in array element A(%, j).

If a matrix is triangular (upper or lower, as specified by the argument UPLO when present), only the
elements of the relevant triangle are stored; the remaining elements of the array need not be set. Such
elements are indicated by * in the examples below. For example, when n = 4:

UPLO | Triangular matrix A Storage in array A
(‘111 G2 O3 ‘114\ G1; G132 G13 Gy
e Gz G23 0G24 * Gy Q3 Gy
G33 @34 ¥ ¥ 033 034
\ ay, ) *  x % ay
(‘111 \ ap, * * *
L Gy Q2 Gy Gy * X
@3, a3y dgg G3; Q3p Gzz *
\041 Gyy Q43 Q44 / Qg1 Q43 Q43 Qg4

Similarly, if the matrix is upper Hessenberg, or if the matrix is quasi-upper triangular, elements below
the first subdiagonal need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the upper or lower triangle of the
matrix (as specified by UPLO) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set. For example, when n = 4:
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UPLO Hermitian matrix A Storage in array A
(‘111 Gy dy3 G4 a;; 813 Q13 G4
o a9 Gy Qg3 Ay * Gy Gp3 Qny
Q13 Gy3 Q33 Q34 * * Q33 Q34
\‘514 Qgq Q34 Q44 * * ¥ 44
ajy Gy Gz Gy a;; ¥ * *
L @y Gyy 3y Qg Ay Gy % *
a3, a3y a3z Q43 a3 043y Gzz *
\041 Gqp O43 Qg4 G4 G4y Gq3 Qg4

3.3.2 Packed storage

Symmetric and Hermitian matrices may be stored more compactly, if the relevant triangle (again as
specified by UPLO) is packed by columns in a one-dimensional array. In Chapter FO7 and Chapter F08,
arrays that hold matrices in packed storage, have argument names ending in ’P’. So:

if UPLO = "U’, q; is stored in AP(i + j(j — 1)/2) for i < j;
if UPLO = 'L’, a;; is stored in AP(i + (2n — j)(j — 1)/2) for j < 4.

For example:

UPLO Triangle of matrix A Packed storage in array AP
y
/‘111 a2 O3 a14\
o Qg Gz3 Qg4
Qy1 Q12039 G13093033 314094034044
N o’ N e e, e
G33 Qg4
\ 2,
(“11 \
a a
o 21 22
L Q1109703184 32032047 033043 G4y
N s e, e’
a3y G3p a3z

Q41 G427 Q43 a44j

Note that for symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. For Hermitian matrices, packing the upper triangle by columns is equivalent to packing the
conjugate of the lower triangle by rows; packing the lower triangle by columns is equivalent to packing
the conjugate of the upper triangle by rows.

3.3.3 Band storage

A symmetric or Hermitian band matrix with k subdiagonals and superdiagonals may be stored compactly
in a two-dimensional array with k + 1 rows and n columns. Columns of the matrix are stored in
corresponding columns of the array, and diagonals of the matrix are stored in rows of the array. Only
the upper or lower triangle (as specified by UPLO) need to be stored. This storage scheme should be
used in practice only if k¥ < n, although routines in Chapter F07 and Chapter F08 work correctly for all
values of k. In Chapter FO7 and Chapter F08, arrays that hold matrices in band storage have argument
names ending in ’B’. So:

if UPLO = U’, g;; is stored in AB(k + 1+ i~ j,j) for max(1,j — k) <i < j;
if UPLO =L, a;; is stored in AB(1+ i~ j,j) for j < i < min(n, j + k).

For example, when n =5 and k = 2:
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UPLO | Hermitian band matrix A Band storage in array AB

a;; 4y O3
Q19 Gyp Q3 Ay * * 13 Qg4 4a3s
% a;3 Q3 Q33 Q34 a3 * Gy Q3 Q34 Q45
Gy G34 Q44 Gy ) Qyp G3z Qyq G535
\ 435 Q45 G55

Gy; Ggp G3p Qg Qj; Qgy A3z G44 Gsg
b Y —_
L a3z, Q3 0G33 Q43 Gas3 Qy; G3p G43 G54 *
G4y Q43 G4q GQgq az; G4y G5z * *

3.3.4 Tridiagonal and bidiagonal matrices

A symmetric tridiagonal or bidiagonal matrix is stored in two one-dimensional arrays, one of length n
containing the diagonal elements, and one of length n — 1 containing the off-diagonal elements. (Older
routines in Chapter F02 store the off-diagonal elements in elements 2 : n of a vector of length n.)

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal matrices that are by definition purely real. In addition, some
complex triangular matrices computed by F08 routines are defined by the algorithm to have real diagonal
elements — in QR factorization, for example.

If such matrices are supplied as input to FO8 routines, the imaginary parts of the diagonal elements are
not referenced, but are assumed to be zero. If such matrices are returned as output by F08 routines, the
computed imaginary parts are explicitly set to zero.

3.3.6 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted Q) is often represented in the NAG Library
as a product of elementary reflectors — also referred to as elementary Householder matrices (usually
denoted H;). For example,

Q=HH,.. H.

Most users need not be aware of the details, because routines are provided to work with this representation,
either to generate all or part of @ explicitly, or to multiply a given matrix by Q or Q7 (Q in the complex
case) without forming @ explicitly.

Nevertheless, the following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix of the form
H=1-7wwH (4)

where 7 is a scalar, and v is an n element vector, with |7|?||v]|2 = 2 x Re(7); v is often referred to as
the Householder vector. Often v has several leading or trailing zero elements, but for the purpose of this
discussion assume that H has no such special structure.

There is some redundancy in the representation (4), which can be removed in various ways. The
representation used in Chapter F08 and in LAPACK (which differs from those used in some of the
routines in Chapter F01, Chapter F02, Chapter F04 and Chapter F06) sets v; = 1; hence v, need not be
stored. In real arithmetic, 1 < 7 < 2, except that 7 = 0 implies H = I.

In complex arithmetic, 7 may be complex, and satisfies 1 < Re(r) < 2 and |7 —1| < 1. Thus a complex H
is not Hermitian (as it is in other representations), but it is unitary, which is the important property. The
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advantage of allowing 7 to be complex is that, given an arbitrary complex vector z, H can be computed
so that

with real 3. This is useful, for example, when reducing a complex Hermitian matrix to real symmetric
tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

3.4 Parameter Conventions

3.4.1 Option parameters

Most routines in this chapter have one or more option parameters, of type CHARACTER. The
descriptions in Section 5 of the routine documents refer only to upper case values (for example 'U’

or ’L’); however in every case, the corresponding lower case characters may be supplied (with the same
meaning). Any other value is illegal.

A longer character string can be passed as the actual parameter, making the calling program more
readable, but only the first character is significant. (This is a feature of Fortran 77.) For example:

CALL SSYTRD (’Upper’, . . . )

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M or N) to be passed as zero, in which case
the computation (or part of it) is skipped. Negative dimensions are regarded as an error.

3.4.3 Length of work arrays

A number of routines implementing block algorithms require workspace sufficient to hold one block of
rows or columns of the matrix if they are to achieve optimum levels of performance — for example,
workspace of size n x nb, where nb is the optimum block size. In such cases, the actual declared length
of the work array must be passed as a separate argument LWORK, which immediately follows WORK
in the argument-list.

The routine will still perform correctly when less workspace is provided: it simply uses the largest block
size allowed by the amount of workspace supplied, as long as this is likely to give better performance
than the unblocked algorithm. On exit, WORK(1) contains the minimum value of LWORK which would
allow the routine to use the optimum block size; this value of LWORK can be used for subsequent runs.

If LWORK indicates that there is insufficient workspace to perform the unblocked algorithm, this is
regarded as an illegal value of LWORK, and is treated like any other illegal parameter value (see Section
3.4.4).

If you are in doubt how much workspace to supply and are concerned to achieve optimum performance,
supply a generous amount (assume a block size of 64, say), and then examine the value of WORK(1) on
exit.

3.4.4 Error-handling and the diagnostic parameter INFO

Routines in this chapter do not use the usual NAG Library error-handling mechanism, involving
the parameter IFAIL. Instead they have a diagnostic parameter INFO. (Thus they preserve complete
compatibility with the LAPACK specification.)

Whereas IFAIL is an Input/Output parameter and must be set before calling a routine, INFO is purely
an QOutput parameter and need not be set before entry.

INFO indicates the success or failure of the computation, as follows:

INFO = 0: successful termination

INFO < 0: failure in the course of computation, control returned to the calling program

[NP3086/18] F08.23



Introduction — F08 F08 - Least-squares and Eigenvalue Problems (LAPACK)

If the routine document specifies that the routine may terminate with INFO < 0, then it is essential
to test INFO on exit from the routine. (This corresponds to a soft failure in terms of the usual NAG
error-handling terminology.) No error message is output.

All routines check that input parameters such as N or LDA or option parameters of type CHARACTER
have permitted values. If an illegal value of the ith parameter is detected, INFO is set to —i, a message
is output, and execution of the program is terminated. (This corresponds to a hard failure in the usual

NAG terminology.)
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4 Decision Trees

Introduction - F08

4.1 General purpose routines (eigenvalues and eigenvectors)
Tree 1: Real Symmetric Matrices
Are eigenvalues yes A‘re all lthe yes — yes
only required? elgel.lva ues Is A tridiagonal? FOBJFF
required?
no
no
. yes Is A a band Y65 | FOSHEF
Is A tridiagonal?
8 FO81IF matrix? FOSJFF
no o
yes
IsA szand FOSHEF Is one triangle yes
matrix? FO8JJF of A stored as a FO8GEF
FO8JFF
no linear array?
ne Is the lower no
triangle of A yes | FOSGEF
stored as a i — FOSFEF FO8JFF
linear array?
no
FOSFEF FO8JJF
Are all
eigenvalues and yes e yes
9
cigenvectors Is A tridiagonal? FOSJEF
required? o
Is A aband yes | FOSHEF
matrix? FO8JEF
no
Is one triangle yes FO8GEF
of A stored as a FO8GFF
no linear array? FO8JEF
no
FOSFEF FO8FFF
FO8JEF
o yes
Is A tridiagonal? FO8JJF FO8JKF
no
s one tatele | yes | FOSGEF FOBIIF
ot A stored as a FO8JKF FO8GGF

linear array?

no

FOSFEF FO8JJF
FO8JKF FO8FGF
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Tree 2: Real Generalized Symmetric-definite Eigenvalue Problems

Yes | Are all the yes | AreA and Bband YeS | FOIBUF FOIBVF

Are eigenvalues i
eigenvalues required? matrices? FOSHEF FO8JFF

only required?

no

Are A and B stored
with one triangle as
a linear array?

YeS | FO7GDF FOSTEF
FOSGEF FOSJFF

no
no

FOTFDF FO8SEF

FOSFEF FO8JFF
Are A and B band YeS | FOIBUF FOIBVF
matrices? FOSHEF FO8JJF

no
no

Are A and B stored yes
with one triangle as FO7GDF FO8TEF
a linear array? FO8GEF FO08JJF

no

FO7FDF FO8SEF
FO8GEF FO8JJF

Are all eigenvalues yes Are A and B stored yes FO7GDF FO8TEF
and eigenvectors with one triangle as FO8GEF FO8GFF
required? a linear array? FO6JEF FO6PLF

no

FO7FDF FO8SEF FOSFEF
FOSFFF FOB8JEF FO6YJF

no

yes | FOIBUF FOIBVF
FOSHEF FO8JJF
F02SDF

Are A and B band
matrices?

no

FO7GDF FO8TEF
Are A and B stored ves | FOSGEF FOSIJF

with one triangle as FOSJKF FO8GGF
a linear array? : FO6PLF

no
FO7FDF FO8SEF

FO8FEF FO8JJF
FO8JKF FO8FGF
FO6YJF

Note: the routines for band matrices only handle the problem Ax = ABx; the other routines handle all three types of problems
(Ax = ABx, ABx = Ax or BAx = Ax) except that, if the problem is BAx = Ax and eigenvectors are required, FO6PHF must be used
instead of FO6PLF, and FO6YFF instead of FO6YJF.
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Tree 3: Real Nonsymmetric Matrices

Are eigenvalues yes Is A an upper yes
only required? Hessenberg matrix? FOSPEF
no
1o FOSNHF FOSNEF
FO8PEF
Is the Schur yes yes
IsA
factorization of A sAanupper FOSPEF
A Hessenberg matrix?
required?
no
FOSNHF
no FOSNEF FO8NFF
FOSPEF FO8NJF
Are all eigenvectors yes Is A an upper yes
required? Hessenberg matrix? FOSPEF FO8QKF

no

FOSNHF FOSNEF
no FOSNFF FOSPEF
FO8QKF FO8SNJF

Is A an upper yes

Hessenberg matrix?

FOSPEF FO8PKF

no

FO8NHF FO8NEF
FOSPEF FO8PKF
FOSNGF FO8NJF
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Tree 4: Complex Hermitian Matrices

F08 - Least-squares and Eigenvalue Problems (LAPACK)

of A stored as a
linear array?

no

FO8FSF FO8JJF
FO8JXF FO8FUF

F08.28

FO8JXF FO8GUF

Are yes Are all the yes Is A a band yes FOSHSF
eigenvalues eigenvalues matrix? FOSJFE
only required? required? :
no
no
Is A a band yes | FOSHSF lsf o ‘“Z"gle yes | FOSGSF
matrix? FOSIJF of A storec asa FOSJFF
linear array?
no
no
Is the lower
no triangle of A yes FO8GSF FO8FSF FO8JFF
stored as a FO8JJF
linear array?
no
FO8FSF FO8JJF
Are all yes
e?gcnvalues and yes | IsA ?band FOSHSF
elgcr.wectors ’mamx? FO8JSF
required?
no
Is one triangle yes | FO8GSF
of A stored as a FO8GTF
linear array? FOBJSF
no no
FO8FSF FO8FTF
FO8JSF
Is one triangle
yes | FO8GSF FO8JJF
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Tree 5: Complex Generalized Hermitian-definite Eigenvalue Problems

- ) Are A and B stored es G OSTSF
Are eigenvalues yes Are all eigenvalues yes with one triangle as b FO7GRF F
only required? required? a linear array? FO8GSF FO8JFF
no
no FO7FRF FO8SSF
FO8FSF FO8JFF
Afeh" and B s“l’“’d yes | FOTGRF FOSTSF
no with one triangle as FOSGSF FOSJJF
a linear array?
no
FO7FRF FO8SSF
FO8GSF FO81JF
Are all eigenvalues yes Are A and B stored FO7GRF FO8TSF
and eigenvectors with one triangle as yes FO8GSF FO8GTF
required? a linear array? FO6JSF FO6PSF
no
FO7FRF FO8SSF
no FOSFSF FOSFTF
FO8JSF FO6ZJF
Are A and B stored yes FO7GRF FO8TSF
with one triangle as FO8GSF FO08JJF FO8JXF
a linear array? FO8GUF FO6SLF
no
FO7FRF FO8SSF
FO8FSF FO8JJF
FO8JXF FO8FUF
FO6ZJF

Note: the same routines are required for all three types of problem (Ax = ABx, ABx = Ax or BAx = Ax) except that, if the problem is
BAx = Ax and eigenvectors are required, FO6SHF must be used instead of FO6SLF, and FO6ZFF instead of FO6ZJF.
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Tree 6: Complex Nonhermitian Matrices

Is A an upper Hessenberg
matrix?

no

FOSNVF FO8NSF FO8PSF

Is A an upper Hessenberg
matrix?

no

FOSNVF FOSNSF FOSNTF
FO8PSF FOSNWF

Is A an upper
Hessenberg matrix?

Are eigenvalues only yes
required?

no
Is the Schur yes
factorization of A
required?

no
Are all eigenvectors yes
required?

no

yes

Is A an upper Hessenberg
matrix?

yes
FO8PSF
yes
FO8PSF
yes

no

FOSNVF FOSNSF FOSNTF
FO8PSF FO8QXF FOSNWF

no

FOSNVF FO8NSF
FO8PSF FO8PXF
FOSNUF FOSNWF

F08.30

FOSPSF FO8PXF

FO8PSF FO8QXF
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4.2 General purpose routines (singular value decomposition)

Are singular

yes

Introduction — F08

[NP3086/18]

es
sAa ‘f)omplex Y values only
matrix? required?
no
no
FO8KSF FOSKTF
FO8MSF
yes
Is A bidiagonal? FO8MEF
no
Aarje smgullar yes FOSKEF
values only FOSMEF
required?
no
FOS8KEF FO8KFF
FOSMEF

FO8KSF FOSMSF
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5 Indexes of LAPACK Routines
Real Matrices Complex Matrices
LAPACK LAPACK LAPACK LAPACK
single precision double precision NAG single precision double precision NAG
SBDSQR DBDSQR FOSMEF CBDSQR ZBDSQR FOBMSF
SGEBAK DGEBAK FOSNJF CGEBAK ZGEBAK FOSNWF
SGEBAL DGEBAL FOSNHF : CGEBAL ZGEBAL FOSNVF
SGEBRD DGEBRD FOSKEF CGEBRD ZGEBRD FOSKSF
SGEHRD DGEHRD FOSNEF CGEHRD ZGEHRD FOSNSF
SGELQF DGELQF FOBAHF CGELQF ZGELQF FOSAVF
SGEQPF DGEQPF FOSBEF CGEQPF ZGEQPF FO8BSF
SGEQRF DGEQRF FOSAEF CGEQRF ZGEQRF FOSASF
SHSEIN DHSEIN FOSPKF CHBTRD ZHBTRD FOBHSF
SHSEQR DHSEQR FOSPEF CHEGST ZHEGST FO8SSF
SOPGTR DOPGTR FOS8GFF CHETRD ZHETRD FOSFSF
SOPHTR DOPMTR FO8GGF CHPGST ZHPGST FOSTSF
SORGBR DORGBR FOSKFF CHPTRD ZHPTRD FO8GSF
SORGHR DORGHR FOSNFF CHSEIN ZHSEIN FO8PXF
SORGLQ DORGLQ FOBAJF CHSEQR ZHSEQR FO8PSF
SORGQR DORGQR FOSAFF CPTEQR ZPTEQR FO8JUF
SORGTR DORGTR FOSFFF CSTEIN ZSTEIN FO8JXF
SORMBR DORMBR FOSKGF CSTEQR ZSTEQR FO8JSF
SORMHR DORMHR FOBNGF CTREVC ZTREVC FOSQXF
SORMLQ DORMLQ FOBAKF CTREXC ZTREXC FOBQTF
SORMQR DORMQR FOSAGF CTRSEN ZTRSEN FOBQUF
SORMTR DORMTR FOSFGF CTRSEA ZTRSHA FO8QYF
SPTEQR DPTEQR FO8JGF CTRSYL ZTRSYL FOBQVF
SSBTRD DSBTRD FOSHEF CUNGBR ZUNGBR FOBKTF
SSPGST DSPGST FOSTEF CUNGHR ZUNGHR FOSHTF
SSPTRD DSPTRD FOSGEF CUNGLQ ZUNGLQ FOBANF
SSTEBZ DSTEBZ FO8JJF CUNGQR ZUNGQR FOBATF
SSTEIN DSTEIN FO8JKF CUNGTR ZUNGTR FOSFTF
SSTERF DSTERF FO8JFF CUNMBR ZUNMBR FOBKUF
SSTEQR DSTEQR FO8JEF CUNMHR ZUNMHR FOSEUF
SSYGST DSYGST FOSSEF CUNMLQ ZUNMLQ FOBAXF
SSYTRD DSYTRD FOSFEF CUNMQR ZUNMQR FOBAUF
STREVC DTREVC FOBQKF CUNMTR ZUNMTR FOSFUF
STREXC DTREXC FO8QFF CUPGTR ZUPGTR FOBGTF
STRSEN DTRSEN FO8QGF CUPMTR ZUPMTR FO8GUF
STRSHA DTRSHA FOSQLF
STRSYL DTRSYL FOSQHF
Table 4
6 References
[1] Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling
S, McKenney A, Ostrouchov S and Sorensen D (1995) LAPACK Users’ Guide (2nd Edition) SIAM,
Philadelphia
[2] Arioli M, Duff I S and De Rijk P P M (1989) On the augmented system approach to sparse least-
squares problems Numer. Math. 55 667-684
[3] Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices STAM J. Scu.
Statist. Comput. 11 873-912
[4] Golub G H and Van Loan C F (1989) Matriz Computations Johns Hopkins University Press (2nd
Edition), Baltimore
[5] Parlett B N (1980) The Symmetric Eigenvalue Problem Prentice-Hall
[6] Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, London
[7] Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra

Springer-Verlag
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FOSAEF (SGEQRF/DGEQRF) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
FOB8AEF (SGEQRF/DGEQRF) computes the QR factorization of a real m by n matrix.
Specification

SUBROUTINE FOBAEF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

ENTRY sgeqrf (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO

real A(LDA,*), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine forms the QR factorization of an arbitrary rectangular real m by n matrix. No
pivoting is performed.

If m 2 n, the factorization is given by:

- of

where R is an n by n upper triangular matrix and Q is an m by m orthogonal matrix. It is
sometimes more convenient to write the factorization as

A= @, 2,)(g)
which reduces to
A = QR,
where Q, consists of the first n columns of Q, and Q, the remaining m—n columns.
f'm < n, R is trapezoidal, and the factorization can be written
A = Q(R, R,),
where R, is upper triangular and R, is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min(m,n) elementary
reflectors (see the Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 8).

Note also that for any k < n, the information returned in the first k columns of the array A
represents a QR factorization of the first £ columns of the original matrix A.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §5.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters

M - INTEGER. Input
On entry: m, the number of rows of the matrix A.
Constraint: M 2 0.
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N - INTEGER. Input
On entry: n, the number of columns of the matrix A.
Constraint: N 2 0.

A(LDA,*) — real array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the m by n matrix A.

Onexit: if m 2 n, the elements below the diagonal are overwritten by details of the
orthogonal matrix Q and the upper triangle is overwritten by the corresponding elements of
the n by n upper triangular matrix R.

I m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix
Q and the remaining elements are overwritten by the corresponding elements of the m by n
upper trapezoidal matrix R.

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOS8AEF (SGEQRF/DGEQRF) is called.

Constraint. LDA 2 max(1,M).

TAU(*) — real array. Output
Note: the dimension of the array TAU must be at least max(1,min(M,N)).
On exit: further details of the orthogonal matrix Q.

WORK (LWORK) — real array. Workspace
Onexit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for

optimum performance.
LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSAEF (SGEQRF/DGEQREF) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb, where nb is
the blocksize.

Constraint: LWORK 2 max(1,N).

INFO — INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed factorization is the exact factorization of a nearby matrix A + E, where

IEN, = O(8)lAll;,

and € is the machine precision.
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8. Further Comments

The total number of floating-point operations is approximately #n*(3m-n) if m 2 n or
im>(3n—-m) if m < n.

To form the orthogonal matrix  this routine may be followed by a call to FOS8AFF
(SORGQR/DORGQR):

CALL SORGQR (M,M,MIN(M,N),A,LDA, TAU, WORK, LWORK, INFO)

but note that the second dimension of the array A must be at least M, which may be larger than
was required by FOSAEF.

When m 2 n, it is often only the first n columns of Q that are required, and they may be formed
by the call:

CALL SORGQR (M, N, N, A, LDA, TAU, WORK, LWORK, INFO)

To apply Q to an arbitrary real rectangular matrix C, this routine may be followed by a call to
FOS8AGF (SORMQR/DORMQR). For example,

CALL SORMQR (’Left’,’Transpose’,M,P,MIN(M,N),A,LDA, TAU,C, LDC, WORK,
+ LWORK, INFO)

forms C = Q7C, where C is m by p.
To compute a QR factorization with column pivoting, use FO8BEF (SGEQPF/DGEQPF).
The complex analogue of this routine is FOBASF (CGEQRF/ZGEQRF).

9. Example
To solve the linear least-squares problem
minimize ||Ax;-b,||, for i = 1,2
where b, and b, are the columns of the matrix B,

-0.57 -1.28 -0.39 0.25 -3.15 2.19
-193 1.08 -0.31 -2.14 -0.11 -3.64
A=1] 230 024 040 -035} and B =} 199 057]}.
-193 0.64 -0.66 0.08 -2.70 823
015 030 0.15 -2.13 0.26 -6.35
-0.02 1.03 -143 0.50 450 -1.48

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FOBAEF Example Program Text
* Mark 16 Release. NAG Copyright 1992,
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LDB, NRHMAX, LWORK
PARAMETER (MMAX=8, NMAX=8, LDA=MMAX, LDB=MMAX, NRHMAX=NMAX,
+ LWORK=64*NMAX)
real ONE
PARAMETER (ONE=1.0e0)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, M, N, NRHS
* .. Local Arrays ..
real A(LDA,NMAX), B(LDB,NRHMAX), TAU(NMAX),
+ WORK ( LWORK)
* .. External Subroutines ..
EXTERNAL sgeqrf, sormgr, strsm, XO04CAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8AEF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) M, N, NRHS
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IF (M.LE.MMAX .AND. N.LE.NMAX .AND. M.GE.N .AND. NRHS.LE.NRHMAX)
+ THEN

* Read A and B from data file

READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
READ (NIN,*) ((B(I,J),J=1,NRHS),I=1,6M)

* Compute the QR factorization of A

CALL sgeqrf(M,N,A, LDA, TAU, WORK, LWORK, INFO)

* Compute C = (Q**T)*B, storing the result in B
*
CALL sormgr(’'Left’,’ Transpose’,M,NRHS,N,A,LDA, TAU, B, LDB, WORK,
+ LWORK, INFO)
*
* Compute least-squares solution by backsubstitution in R*X = C

CALL strsm(’Left’,’Upper’,’No transpose’,’Non-Unit’,N,NRHS,ONE,
+ A,LDA,B,LDB)

* Print least-squares solution(s)

WRITE (NOUT, *)

IFAIL = 0
*
CALL X04CAF(’General’,’ ’,N,NRHS,B,LDB,
+ ’Least-squares solution(s)’, IFAIL)
*
END IF
STOP
END

9.2. Program Data

FOBAEF Example Program Data
6 4 2 :Values of M, N and NRHS
-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35
-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13
-0.02 1.03 -1.43 0.50 :End of matrix A

-3.15 2.19
-0.11 -3.64
1.99 0.57
-2.70 8.23
0.26 -6.35
4.50 -1.48 :End of matrix B

9.3. Program Results
FO8AEF Example Program Results

Least-squares solution(s)
1

1 1.5146 -1.5838
2 1.8621 0.5536
3 -1.4467 1.3491
4 0.0396 2.9600
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FOSAFF (SORGQR/DORGQR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOSAFF (SORGQR/DORGQR) generates all or part of the real orthogonal matrix Q from a QR
factorization computed by FOSAEF (SGEQRF/DGEQRF) or FOS8BEF (SGEQPF/DGEQPF).

Specification
SUBROUTINE FOQ8AFF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
ENTRY sorggr (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER M, N, K, LDA, LWORK, INFO
real A(LDA, *), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOBAEF (SGEQRF/DGEQRF) or FOS8BEF
(SGEQPF/DGEQPF), which perform a QR factorization of a real matrix A. FOSAEF and
FOSBEF represent the orthogonal matrix Q as a product of elementary reflectors.

This routine may be used to generate Q explicitly as a square matrix, or to form only its leading
columns.

Usually Q is determined from the QR factorization of an m by p matrix A with m 2 p. The whole
of 0 may be computed by:

CALL SORGQR (M, M, P,A,LDA, TAU, NORK, LWORK, INFO)
(note that the array A must have at least m columns) or its leading p columns by:

CALL SORGQR (M, P,P,A,LDA, TAU, WORK, LWORK, INFO)

The columns of Q returned by the last call form an orthonormal basis for the space spanned by
the columns of A; thus FOSAEF followed by FOSAFF can be used to orthogonalise the columns
of A.

The information returned by the QR factorization routines also yields the QR factorization of the
leading k columns of A, where k < p. The orthogonal matrix arising from this factorization can
be computed by:

CALL SORGQR (M,M,K,A,LDA, TAU, WORK, LWORK, INFO)
or its leading k columns by:
CALL SORGQR (M, K, K,A,LDA, TAU, WORK, LWORK, INFO)

References

[1] GOLUB, G.H. and VAN LOAN, CF.
Matrix Computations, §5.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters

M - INTEGER. Input
On entry: m, the order of the orthogonal matrix Q.
Constraint: M 2 0.

N — INTEGER. Input
On entry: n, the number of columns of matrix Q that are required.
Constraint: M 2 N 2 0.
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K — INTEGER. Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.
Constraint: N 2 K 2 0.

A(LDA,*) — real array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOBAEF (SGEQRF/DGEQRF) or FOSBEF (SGEQPF/DGEQPF).

On exit: the m by n matrix Q.

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FO8AFF (SORGQR/DORGQR) is called.

Constraint: LDA 2 max(1,M).

TAU(*) — real array. Input
Note: the dimension of the array TAU must be at least max(1,K).
Onentry: further details of the elementary reflectors, as returned by FOSAEF
(SGEQRF/DGEQRF) or FOS8BEF (SGEQPF/DGEQPF).

WORK (LWORK) — real array. Workspace

Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOS8AFF (SORGQR/DORGQR) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb, where nb is
the blocksize.

Constraint: LWORK 2 max(1,N).

INFO - INTEGER. Output
On exit. INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that
El, = O(e),

where € is the machine precision.

Further Comments

The total number of floating-point operations is approximately 4mnk — 2(m+n)k® + $k>; when
n = k, the number is approximately 31 (3m—n).

The complex analogue of this routine is FOBATF (CUNGQR/ZUNGQR).
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9. Example

To form the leading 4 columns of the orthogonal matrix Q from the QR factorization of the
matrix A, where

-0.57 -1.28 -039 0.25
-193 1.08 -0.31 -2.14
A=] 230 024 040 -035
-193 064 -066 0.08
0.15 030 0.15 -2.13
-0.02 1.03 -143 050

The columns of Q form an orthonormal basis for the space spanned by the columns of A.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8AFF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LWORK
PARAMETER (MMAX=8, NMAX=8 , LDA=MMAX, LWORK=64 *NMAX )
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, M, N
CHARACTER*30 TITLE
* .. Local Arrays ..
real A(LDA,NMAX), TAU(NMAX), WORK(LWORK)
* .. External Subroutines ..
EXTERNAL sgeqrf, sorgqr, XO04CAF
* .. Executable Statements
WRITE (NOUT,*) ’FO8S8AFF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) M, N
IF (M.LE.MMAX .AND. N.LE.NMAX .AND. M.GE.N) THEN
* Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
* Compute the QR factorization of A
CALL sgeqrf(M,N,A, LDA, TAU, WORK, LWORK, INFO)
* Form the leading N columns of Q explicitly
CALL sorggr(M,N,N,A,LDA, TAU, WORK, LWORK, INFO)
* Print the leading N columns of Q only
WRITE (NOUT, *)
WRITE (TITLE,99999) N
IFAIL = 0
CALL X04CAF(’General’,’ ’,M,N,A,LDA,TITLE, IFAIL)
END IF

STOP
*

99999 FORMAT (’The leading ’,I2,’ columns of Q')
END
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9.2. Program Data

FOBAFF Example

6 4
-0.57
-1.93

2.30
-1.93

0.15
-0.02

-1.28
1.08
0.24
0.64
0.30
1.03

9.3. Program Results
FOSAFF Example Program Results

The leading 4 columns of Q

Progr

-0.39
-0.31
0.40
-0.66
0.15
-1.43

am Data

0.25
-2.14
-0.35

0.08
-2.13

0.50

1 2 3
1 -0.1576 0.6744 -0.4571
2 -0.5335 -0.3861 0.2583
3 0.6358 -0.2928 0.0165
4 -0.5335 -0.1692 -0.0834
5 0.0415 -0.1593 0.1475
6 -0.0055 -0.5064 -0.8339

[ejoNoloNeNe]

FO8 — Least-squares and Eigenvalue Problems (LAPACK)

:Values of M and N

:End of matrix A

.4489
.3898
.1930
.2350
.7436
.0335

Page 4 (last)
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FOSAGF (SORMQR/DORMQR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

FOSAGF (SORMQR/DORMQR) multiplies an arbitrary real matrix C by the real orthogonal
matrix Q from a QR factorization computed by FOSBAEF (SGEQRF/DGEQRF) or FOSBEF
(SGEQPF/DGEQPF).

2. Specification
SUBROUTINE FOBAGF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,

1 LWORK, INFO)

ENTRY sormgr (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

INTEGER M, N, K, LDA, LDC, LWORK, INFO

real A(LDA, *), TAU(*), C(LDC,*), WORK (LWORK)

CHARACTER*1  SIDE, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine is intended to be used after a call to FOBAEF (SGEQRF/DGEQRF) or FOS8BEF
(SGEQPF/DGEQPF), which perform a QR factorization of a real matrix A. FOSAEF and
FOSBEF represent the orthogonal matrix Q as a product of elementary reflectors.

This routine may be used to form one of the matrix products
QC, QC, CQ or CQ",
overwriting the result on C (which may be any real rectangular matrix).

A common application of this routine is in solving linear least-squares problems, as described in
the Chapter Introduction, and illustrated in Section 9 of the document for FOSBAEF.

4. References
[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.
5. Parameters
1: SIDE — CHARACTER*1. Input
On entry: indicates how Q or Q7 is to be applied to C as follows:
if SIDE = 'L', then Q or QT is applied to C from the left;
if SIDE = 'R', then Q or Q7 is applied to C from the right.
Constraint. SIDE = L' or R'.

2:  TRANS - CHARACTER*1. Input
On entry: indicates whether Q or Q7 is to be applied to C as follows:
if TRANS = 'N', then Q is applied to C;
if TRANS = 'T', then Q7 is applied to C.
Constraint: TRANS = 'N' or T
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10:

11:

12:

M - INTEGER. Input
On entry: m, the number of rows of the matrix C.
Constraint: M 2 0,

N - INTEGER. Input
On entry: n, the number of columns of the matrix C.
Constraint: N 2 0.

K - INTEGER. Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints: M 2 K 2 0 if SIDE = L',
N 2K 2 0if SIDE = R'.

A(LDA,*) — real array. Input
Note: the second dimension of the array A must be at least max(1,K).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOS8AEF (SGEQRF/DGEQRF) or FO8BEF (SGEQPF/DGEQPF).

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FO8AGF (SORMQR/DORMQR) is called.

Constraints: LDA 2 max(1,M) if SIDE = 'L',
LDA 2 max(1,N) if SIDE = R’

TAU(*) - real array. Input
Note: the dimension of the array TAU must be at least max(1,K).

Onentry: further details of the elementary reflectors, as returned by FOSAEF
(SGEQRF/DGEQRF) or FO8BEF (SGEQPF/DGEQPF).

C(LDC,*) — real array. Input/ Output
Note: the second dimension of the array C must be at least max(1,N).
On entry: the m by n matrix C.
On exit: C is overwritten by QC or Q7C or CQT or CQ as specified by SIDE and TRANS.

LDC - INTEGER. Input

Onentry: the first dimension of the array C as declared in the (sub)program from which
FOSAGF (SORMQR/DORMQR) is called.

Constraint: LDC 2 max(1,M).

WORK (LWORK) — real array. Workspace

Oneexit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FO8AGF (SORMQR/DORMQR) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb if SIDE = 'L’
and at least Mxnb if SIDE = 'R, where nb is the blocksize.

Constraints: LWORK 2 max(1,N) if SIDE = 'L,
LWORK 2 max(1,M) if SIDE = R'.
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13:

INFO — INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed result differs from the exact result by a matrix E such that
IEl, = O(&)ICl,

where € is the machine precision.

Further Comments

The total number of floating-point operations is approximately 2nk(2m—k) if SIDE = 'L’ and
2mk(2n-k) if SIDE = R'.

The complex analogue of this routine is FOBAUF (CUNMQR/ZUNMQR).

Example
See the example for FOSBAEF (SGEQRF/DGEQRF).
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FOSAHF (SGELQF/DGELQF) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
FOSAHF (SGELQF/DGELQF) computes the LQ factorization of a real m by n matrix.

2. Specification
SUBROUTINE FOSAHF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

ENTRY sgelgf (M, N, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER M, N, LDA, LWORK, INFO
real A(LDA, *), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description
This routine forms the LQ factorization of an arbitrary rectangular real m by n matrix. No
pivoting is performed.
If m < n, the factorization is given by:
A= (L0)Q

where L is an m by m lower triangular matrix and Q is an n by n orthogonal matrix. It is
sometimes more convenient to write the factorization as

@,
A=(LO0
( )(Qz
which reduces to
A= LQh

where Q, consists of the first m rows of Q, and Q, the remaining n—m rows.
If m > n, L is trapezoidal, and the factorization can be written
= (o)e
L,
where L, is lower triangular and L, is rectangular.
The LQ factorization of A is essentially the same as the QR factorization of AT, since

A= (L0)Q & AT = QT(’BT).

The matrix Q is not formed explicitly but is represented as a product of min(m,n) elementary
reflectors (see the Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 8).

Note also that for any k < m, the information returned in the first k rows of the array A
represents an LQ factorization of the first k rows of the original matrix A.

4. References
None.

5. Parameters

1: M - INTEGER. Input
On entry: m, the number of rows of the matrix A.
Constraint: M 2 0.
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N — INTEGER. Input
On entry: n, the number of columns of the matrix A.
Constraint: N 2 0.

A(LDA,*) — real array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the m by n matrix A.

Onexit: if m < n, the elements above the diagonal are overwritten by details of the
orthogonal matrix Q and the lower triangle is overwritten by the corresponding elements of
the m by m lower triangular matrix L.

Ifm > n, the strictly upper triangular part is overwritten by details of the orthogonal matrix
Q and the remaining elements are overwritten by the corresponding elements of the m by n
lower trapezoidal matrix L.

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSAHF (SGELQF/DGELQF) is called.

Constraint: LDA 2 max(1,M).

TAU(*) — real array. Output
Note: the dimension of the array TAU must be at least max(1,min(M,N)).
On exit: further details of the orthogonal matrix Q.

WORK (LWORK) - real array. Workspace
Onexit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FO8AHF (SGELQF/DGELQF) is called.

Suggested value: for optimum performance LWORK should be at least Mxnb, where nb is
the blocksize.

Constraint: LWORK 2 max(1,M).

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed factorization is the exact factorization of a nearby matrix A + E, where

€N, = O(e)lAll,,

and ¢ is the machine precision.
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8. Further Comments

The total number of floating-point operations is approximately #m?(3n—m) if m < n or
n>(Bm-n) if m > n.

To form the orthogonal matrix Q this routine may be followed by a call to FOS8AJF
(SORGLQ/DORGLQ):

CALL SORGLQ (N,N,MIN(M,N),A,LDA, TAU, WORK, LWORK, INFO)

but note that the first dimension of the array A, specified by the parameter LDA, must be at least
N, which may be larger than was required by FOSBAHF.

When m < n, it is often only the first m rows of Q that are required, and they may be formed by
the call:

CALL SORGLQ (M, N,M, A, LDA, TAU, WORK, LWORK, INFO)

To apply Q to an arbitrary real rectangular matrix C, this routine may be followed by a call to
FOSAKF (SORMLQ/DORMLQ). For example,

CALL SORMLQ (’Left’,’Transpose’,M,P,MIN(M,N), A, LDA,TAU,C,LDC,
+ WORK, LWORK, INFO)

forms the matrix product C = QC, where C is m by p.
The complex analogue of this routine is FOBAVF (CGELQF/ZGELQF).

9. Example
To find the minimum-norm solutions of the under-determined systems of linear equations
Ax, = b, and Ax, = b,
where b, and b, are the columns of the matrix B,

-542 328 -368 027 206 046 -2.87 -5.23
A= -1.65 -3.40 -3.20 -1.03 -4.06 -0.01 and B = 1.63 0.29

-037 235 190 431 -1.76 1.13 =352 476

-3.15 -0.11 199 -2.70 026 4.50 0.45 -841

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FOS8AHF Example Program Text
* Mark 16 Release. NAG Copyright 1992,
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LDB, NRHMAX, LWORK
PARAMETER (MMAX=8, NMAX=8 , LDA=MMAX, LDB=NMAX, NRHMAX=NMAX,
+ LWORK=64*NMAX)
real ZERO, ONE
PARAMETER (ZERO=0.0e0, ONE=1,0e0)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, M, N, NRHS
* .. Local Arrays ..
real A(LDA,NMAX), B(LDB,NRHMAX), TAU(NMAX),
+ WORK ( LWORK)
* .. External Subroutines ..
EXTERNAL sgelgf, sormlq, strsm, FO6QHF, X04CAF
* .. Executable Statements ..
WRITE (NOUT,*) "FO8AHF Example Program Results’
* Skip heading in data file

READ (NIN, *)

READ (NIN,*) M, N, NRHS

IF (M.LE.MMAX .AND. N.LE.NMAX .AND. M.LE.N .AND. NRHS.LE.NRHMAX)
+ THEN

* Read A and B from data file
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READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
READ (NIN,*) ((B(I,J),J=1,NRHS),I=1,6M)

Compute the LQ factorization of A

CALL sgelgf(M,N,A,LDA, TAU, WORK, LWORK, INFO)

Solve L*Y = B,

storing the result in B

CALL strsm(’Left’,’Lower’,’No transpose’,’Non-Unit’,M,NRHS,ONE,

A,LDA,B,LDB)

Set rows (M+l) to N of B to zero

IF (M.LT.N) CALL FO6QHF(’General’, N-M,NRHS, ZERO, ZERO,B(M+1,1),
LDB)

Compute minimum-norm solution X = (Q**T)*B in B

CALL sormlg(’'Left’,’ Transpose’,N,NRHS,M, A, LDA, TAU, B, LDB, WORK,

LWORK, INFO)

Print minimum-norm solution(s)

WRITE (NOUT, *)

IFAIL

CALL X04CAF(’General’,’

END IF
STOP
END

9.2. Program Data
FO8AHF Example Program Data

4 6
-5.42
-1.65
-0.37
-3.15
-2.87

1.63
-3.52

0.45

2
3.28

9.3. Program Results
FOBAHF Example Program Results

=0

-3.68
-3.20
1.90
1.99

’,N,NRHS,B,LDB,

'Minimum~-norm solution(s)’,IFAIL)

0.27
-1.03
4.31
-2.70

Minimum-norm solution(s)

AU W

1
0.2371
-0.4575
-0.0085
-0.5192
0.0239
-0.0543

2

.7383
.0158
.0161
.0768
.6436
.6613

2.06
-4.06
-1.76

0.26

:Values of M, N and NRHS
0.46
-0.01
1.13
4.50 :End of matrix A

:End of matrix B
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FOSAJF (SORGLQ/DORGLQ) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FO8AJF (SORGLQ/DORGLAQ) generates all or part of the real orthogonal matrix Q from an LQ
factorization computed by FOSAHF (SGELQF/DGELQF).

Specification
SUBROUTINE FO8AJF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
ENTRY sorgly (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER M, N, K, LDA, LWORK, INFO
real A(LDA,*), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSBAHF (SGELQF/DGELQF), which
performs an LQ factorization of a real matrix A. FOBAHF represents the orthogonal matrix Q as
a product of elementary reflectors.

This routine may be used to generate Q explicitly as a square matrix, or to form only its leading
TOWS.

Usually Q is determined from the LQ factorization of a p by n matrix A with p < n. The whole
of Q may be computed by:

CALL SORGLQ (N,N,P,A,LDA, TAU, WORK, LWORK, INFO)
(note that the array A must have at least n rows) or its leading p rows by:

CALL SORGLQ (P,N,P,A,LDA, TAU, WORK, LWORK, INFO)

The rows of Q returned by the last call form an orthonormal basis for the space spanned by the
rows of A; thus FOSBAHF followed by FOSAJF can be used to orthogonalise the rows of A.

The information returned by the LQ factorization routines also yields the LQ factorization of the
leading k rows of A, where k < p. The orthogonal matrix arising from this factorization can be
computed by:

CALL SORGLQ (N, N,K,A,LDA, TAU, WORK, LWORK, INFO)
or its leading k rows by:

CALL SORGLQ (K,N,K,A,LDA, TAU, WORK, LWORK, INFO)

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
M — INTEGER. Input

On entry: m, the number of rows of the matrix Q.
Constraint: M 2 0.

N — INTEGER. Input
On entry: n, the number of columns of the matrix Q.
Constraint: N 2 M.
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K — INTEGER. Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.
Constraint M 2 K 2 0.

A(LDA,*) — real array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).

Onentry. details of the vectors which define the elementary reflectors, as returned by
FOS8AHF (SGELQF/DGELQF).

On exit: the m by n matrix Q.

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FO8AJF (SORGLQ/DORGLAQ) is called.

Constraint: LDA 2 max(1,M).

TAU(*) — real array. Input
Note: the dimension of the array TAU must be at least max(1,K).

Onentry: further details of the elementary reflectors, as returned by FOS8AHF
(SGELQF/DGELQF).

WORK (LWORK) — real array. Workspace

Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FO8AJF (SORGLQ/DORGLQ) is called.

Suggested value: for optimum performance LWORK should be at least Mxnb, where nb is
the blocksize.

Constraint: LWORK 2 max(1,M).

INFO — INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that
IEI, = O(e),

where € is the machine precision.

Further Comments

The total number of floating-point operations is approximately 4mnk — 2(m+n)k> + $k°; when
m = k, the number is approximately m? (3n-m).

The complex analogue of this routine is FOBAWF (CUNGLQ/ZUNGLQ).
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9. Example
To form the leading 4 rows of the orthogonal matrix Q from the LQ factorization of the matrix
A, where
-542 328 -368 027 206 046
A= -1.65 -3.40 -3.20 -1.03 -4.06 -0.01

-037 235 190 431 -1.76 1.13
-3.15 -0.11 199 -2.70 0.26 4.50

The rows of Q form an orthonormal basis for the space spanned by the rows of A.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8AJF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LWORK
PARAMETER (MMAX=8, NMAX=8 , LDA=MMAX, LWORK=64 *MMAX )
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, M, N
CHARACTER*30 TITLE
* .. Local Arrays
real A(LDA,NMAX), TAU(NMAX), WORK(LWORK)
* .. External Subroutines
EXTERNAL sgelgf, sorglg, X04CAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8AJF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) M, N
IF (M.LE.MMAX .AND. N.LE.NMAX .AND. M.LE.N) THEN
* Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
* Compute the LQ factorization of A
CALL sgelgf(M,N,A,LDA, TAU, WORK, LWORK, INFO)
* Form the leading M rows of Q explicitly
CALL sorglg(M,N,M, A, LDA, TAU, WORK, LWORK, INFO)
* Print the leading M rows of Q only
WRITE (NOUT, *)
WRITE (TITLE, 99999) M
IFAIL = 0
CALL XO04CAF(’General’,’ ’',M,N,A,LDA,TITLE, IFAIL)
END IF

STOP
*

99999 FORMAT (’The leading ’,I2,’ rows of Q')
END
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9.2. Program Data

FO8AJF Example Program Data
4 6

-5.42 3.28 -3.68 0.27 2.
-1.65 -3.40 -3.20 -1.03 -4.
-0.37 2.35 1.90 4.31 -1.
-3.15 -0.11 1.99 -2.70 0.

9.3. Program Results
FO8AJF Example Program Results

The leading 4 rows of Q
1 2 3

FO08 — Least-squares and Eigenvalue Problems (LAPACK)

06
06
76
26

4

1 -0.7104 0.4299 -0.4824 0.0354
2 -0.2412 -0.5323 -0.4845 -0.1595 -0.6311 -0.0027
3 0.1287 -0.2619 -0.2108 -0.7447
4 -0.3403 -0.0921 0.4546 -0.3869 -0.0465 0.7191

:Values of M and N
0.46
-0.01
1.13
4.50 :End of matrix A

5 6
0.2700 0.0603

0.5227 -0.2063

Page 4 (last)
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FOSAKF (SORMLQ/DORMLQ) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOS8AKF (SORMLQ/DORMLQ) multiplies an arbitrary real matrix C by the real orthogonal
matrix Q from an LQ factorization computed by FOSAHF (SGELQF/DGELQF).

Specification

SUBROUTINE FO8AKF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

ENTRY sormlg (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

INTEGER M, N, K, LDA, LDC, LWORK, INFO

real A(LDA, *), TAU(*), C(LDC, *), WORK(LWORK)

CHARACTER*1  SIDE, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSBAHF (SGELQF/DGELQF), which
performs an LQ factorization of a real matrix A. FOBAHF represents the orthogonal matrix Q as
a product of elementary reflectors.

This routine may be used to form one of the matrix products
QC, Q'C, CQ or CQT,
overwriting the result on C (which may be any real rectangular matrix).

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
SIDE — CHARACTER*1, Input
On entry: indicates how Q or Q7 is to be applied to C as follows:
if SIDE = 'L, then Q or Q7 is applied to C from the left;
if SIDE = 'R', then Q or Q7 is applied to C from the right.
Constraint: SIDE = L' or R'.

TRANS — CHARACTER*1. Input
On entry: indicates whether Q or Q7 is to be applied to C as follows:
if TRANS = 'N/, then Q is applied to C;
if TRANS = 'T', then Q7 is applied to C.
Constraint: TRANS = 'N' or 'T.

M — INTEGER. Input
On entry: m, the number of rows of the matrix C.
Constraint: M 2 0.
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N - INTEGER. Input
On entry: n, the number of columns of the matrix C.
Constraint: N 2 0.

K — INTEGER. Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints: M 2 K 2 0if SIDE = 'L,
N 2K 2 0if SIDE = R
A(LDA*) — real array. Input

Note: the second dimension of the array A must be at least max(1,M) if SIDE = 'L' and at
least max(1,N) if SIDE = R'.

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOS8AHF (SGELQF/DGELQF).

LDA — INTEGER. Input

Onentry:. the first dimension of the array A as declared in the (sub)program from which
FOS8AKF (SORMLQ/DORMLQ) is called.

Constraint: LDA 2 max(1,K).

TAU(*) — real array. Input
Note: the dimension of the array TAU must be at least max(1,K).

Onentry: further details of the elementary reflectors, as returned by FO8AHF
(SGELQF/DGELQF).

C(LDC,*) — real array. Input/ Output
Note: the second dimension of the array C must be at least max (1,N).
On entry: the m by n matrix C.
On exit: C is overwritten by QC or Q"C or CQ” or CQ as specified by SIDE and TRANS.

LDC - INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
FOSAKF (SORMLQ/DORMLAQ)) is called.

Constraint: LDC 2 max(1,M).

WORK(LWORK) — real array. Workspace

Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOS8AKF (SORMLQ/DORMLAQ) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb if SIDE = 'L'
and at least Mxnb if SIDE = 'R', where nb is the blocksize.

Constraints: LWORK 2 max(1,N) if SIDE = L',
LWORK 2 max(1,M) if SIDE = R'.
INFO — INTEGER. Output

Onexit: INFO = 0 unless the routine detects an error (see Section 6).
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6.

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy

The computed result differs from the exact result by a matrix E such that
IEN, = O(&)ICl,,

where € is the machine precision.

Further Comments

The total number of floating-point operations is approximately 2nk(2m-k) if SIDE = 'L' and
2mk(2n—k) if SIDE = R".

The complex analogue of this routine is FOBAXF (CUNMLQ/ZUNMLQ).

Example
See the example for FOSAHF (SGELQF/DGELQF).
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FO8ASF (CGEQRF/ZGEQRF) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
FOBASF (CGEQRF/ZGEQRF) computes the QR factorization of a complex m by n matrix.
Specification

SUBROUTINE FO8ASF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

ENTRY cgeqrf (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO

complex A(LDA, *), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine forms the QR factorization of an arbitrary rectangular complex m by n matrix. No
pivoting is performed.

If m 2 n, the factorization is given by:

e of

where R is an n by n upper triangular matrix (with real diagonal elements) and Q is an m by m
unitary matrix. It is sometimes more convenient to write the factorization as

A= @ 2.(g)
which reduces to
A = Q|R,
where Q, consists of the first n columns of Q, and Q, the remaining m—n columns.
If m < n, R is trapezoidal, and the factorization can be written
A = Q(R, R,),
where R, is upper triangular and R, is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min(m,n) elementary
reflectors (see the Chapter Introduction for details ). Routines are provided to work with Q in this
representation (see Section 8).

Note also that for any k < n, the information returned in the first k& columns of the array A
represents a QR factorization of the first k¥ columns of the original matrix A.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §5.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters

M — INTEGER. Input
On entry: m, the number of rows of the matrix A.
Constraint: M 2 0,
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2: N - INTEGER. Input
On entry: n, the number of columns of the matrix A.
Constraint: N 2 0.

3:  A(LDA,*) — complex array. Input!/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the m by n matrix A.

Onexit: if m 2 n, the elements below the diagonal are overwritten by details of the unitary
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n
upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the unitary matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n
upper trapezoidal matrix R.

The diagonal elements of R are real.

4: LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FO8ASF (CGEQRF/ZGEQREF) is called.

Constraint: LDA 2 max(1,M).

5:  TAU(*) — complex array. Output
Note: the dimension of the array TAU must be at least max(1,min(M,N)).
On exit: further details of the unitary matrix Q.

6:  WORK(LWORK) — complex array. Workspace

Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

7:  LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FO8ASF (CGEQRF/ZGEQREF) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb, where nb is
the blocksize.

Constraint: LWORK 2 max(1,N).

8: INFO — INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

7. Accuracy
The computed factorization is the exact factorization of a nearby matrix A + E, where

IEN, = O(9)lAll,,

and € is the machine precision.

Page 2 [NP2478/16]



FO08 — Least-squares and Eigenvalue Problems (LAPACK)

FO8ASF (CGEQRF/ZGEQRF)

8. Further Comments
The total number of real floating-point operations is approximately §n*(3m—n) if m 2 n or
m*(3n-m) if m < n.
To form the unitary matrix Q this routine may be followed by a call to FOSATF
(CUNGQR/ZUNGQR):
CALL CUNGQR (M,M,MIN(M,N),A,LDA, TAU, WORK, LWORK, INFO)
but note that the second dimension of the array A must be at least M, which may be larger than
was required by FOSASF.
When m 2 n, it is often only the first n columns of Q that are required, and they may be formed
by the call:
CALL CUNGQR (M,N,N,A, LDA, TAU, WORK, LWORK, INFO)
To apply Q to an arbitrary complex rectangular matrix C, this routine may be followed by a call
to FOBAUF (CUNMQR/ZUNMGQR). For example,
CALL CUNMQR (’Left’,’Conjugate Transpose’ ,M,P,MIN(M,N),A, LDA, TAU,
+ C, LDC, WORK, LWORK, INFO)
forms C = Q”C, where C is m by p.
To compute a QR factorization with column pivoting, use FOSBSF ( CGEQPF/ZGEQPF).
The real analogue of this routine is FOSAEF (SGEQRF/DGEQRF).
9. Example
To solve the linear least-squares problem
minimize ||Ax;,-b,|l, for i = 1,2
where b, and b, are the columns of the matrix B,
0.96 — 0.81i -0.03 + 0.96i —-0.91 + 2.06i —0.05 + 0.41;
-0.98 + 1.98i -1.20 + 0.19i -0.66 + 0.42i -0.81 + 0.56i
A=1] 062-046i 101 + 0.02i 063 — 0.17i —1.11 + 0.60i
-037 + 0.38i 0.19 — 0.54i —0.98 — 0.36i 0.22 — 0.20i
0.83 + 0.51i 0.20 + 0.01i -0.17 — 0.46i 1.47 + 1.59i
1.08 — 0.28/ 0.20 - 0.12i -0.07 + 1.23i 0.26 + 0.26i
and
-1.54 + 0.76i 3.17 - 2.09i
0.12 - 1.92i -6.53 + 4.18i
=1-9.08 - 431i 728 + 0.73i |.
749 + 3.65i 091 - 397
-5.63 — 2.12i -5.46 - 1.64i
2.37 + 8.03i -2.84 — 5.86i
9.1. Program Text
Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.
* FO8ASF Example Program Text
* Mark 16 Release. NAG Copyright 1992,
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LDB, NRHMAX, LWORK
PARAMETER (MMAX=8, NMAX=8 , LDA=MMAX , LDB=MMAX, NRHMAX=NMAX,
+ LWORK=64*NMAX)
complex ONE
PARAMETER (ONE=(1.0e0,0.0e0))
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, M, N, NRHS
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* .. Local Arrays ..
complex A(LDA,NMAX), B(LDB,NRHMAX), TAU(NMAX),
+ WORK ( LWORK)
CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines .
EXTERNAL X04DBF, cgeqrf, ctrsm, cunmgqr
* .. Executable Statements ..
WRITE (NOUT,*) ’‘F08ASF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) M, N, NRHS
IF (M.LE.MMAX .AND. N.LE.NMAX .AND. M.GE.N .AND. NRHS.LE.NRHMAX)
+ THEN
* Read A and B from data file

READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
READ (NIN,*) ((B(I,J),J=1,NRHS),I=1,6M)

* Compute the QR factorization of A

CALL cgeqrf(M,N,A,LDA, TAU, WORK, LWORK, INFO)

* Compute C = (Q**H)*B, storing the result in B
*
CALL cunmgqr(’Left’,’Conjugate transpose’,M,NRHS,N,A,LDA,TAU,B,
+ LDB, WORK, LWORK, INFO)
*
* Compute least-squares solution by backsubstitution in R*X = C

CALL ctrsm(’'Left’,’Upper’,’No transpose’,’Non-Unit’,N,NRHS,ONE,
+ A,LDA,B,LDB)

* Print least-squares solution(s)

WRITE (NOUT, *)

IFAIL = 0
*
CALL XO04DBF(’General’,’ ’,N,NRHS,B,LDB,’Bracketed’,’F7.4',
+ 'Least-squares solution(s)’,’Integer’, RLABS,
+ ’Integer’,CLABS, 80,0, IFAIL)
*
END IF
STOP
END

9.2. Program Data

FO8ASF Example Program Data
6 4 2 :Values of M, N and NRHS

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)

(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)

( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)

(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)

( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)

( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A
(-1.54, 0.76) ( 3.17,-2.09)

( 0.12,-1.92) (-6.53, 4.18)

(-9.08,-4.31) ( 7.28, 0.73)

( 7.49, 3.65) ( 0.91,-3.97)

(-5.63,-2.12) (-5.46,-1.64)

( 2.37, 8.03) (—-2.84,-5.86) :End of matrix B
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9.3. Program Results
FO8ASF Example Program Results

Least-squares solution(s)

1 2
1 (-0.4936,-1.1993) ( 0.7535, 1.4404)
2 (-2.4708, 2.8373) ( 5.1726,-3.6235)
3 (1.5060,-2.1830) (-2.6609, 2.1334)
4 ( 0.4459, 2.6848) (-2.6966, 0.2711)
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FOSATF (CUNGQR/ZUNGQR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FO8ATF (CUNGQR/ZUNGQR) generates all or part of the complex unitary matrix Q from a
QR factorization computed by FOSASF (CGEQRF/ZGEQRF) or FOSBSF (CGEQPF/ZGEQPF).

Specification
SUBROUTINE FOSATF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
ENTRY cunggr (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER M, N, K, LDA, LWORK, INFO
complex A(LDA, *), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSASF (CGEQRF/ZGEQRF) or FO8BSF
(CGEQPF/ZGEQPF), which perform a QR factorization of a complex matrix A. FOBASF and
FO8BSF represent the unitary matrix Q as a product of elementary reflectors.

This routine may be used to generate Q explicitly as a square matrix, or to form only its leading
columns.

Usually Q is determined from the QR factorization of an m by p matrix A with m > p. The whole
of Q may be computed by:

CALL CUNGQR (M,M,P,A,LDA, TAU, WORK, LWORK, INFO)
(note that the array A must have at least m columns) or its leading p columns by:
CALL CUNGQR (M,P,P,A,LDA, TAU, WORK, LWORK, INFO)

The columns of Q returned by the last call form an orthonormal basis for the space spanned by
the columns of A; thus FOSASF followed by FOSATF can be used to orthogonalise the columns
of A.

The information returned by the QR factorization routines also yields the QR factorization of the
leading k columns of A, where k < p. The unitary matrix arising from this factorization can be
computed by:

CALL CUNGQR (M,M, K,A,LDA, TAU, WORK, LWORK, INFO)
or its leading & columns by:

CALL CUNGQR (M, K,K, A, LDA, TAU, WORK, LWORK, INFO)

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §5.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters

M — INTEGER. Input
On entry: m, the order of the unitary matrix Q.
Constraint: M 2 0.

N - INTEGER. Input
On entry: n, the number of columns of matrix Q that are required.
Constrain: M 2 N 2 0.
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K — INTEGER. Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.
Constraint: N 2 K 2 0.

A(LDA,*) — complex array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOSASF (CGEQRF/ZGEQRF) or FO8BSF (CGEQPF/ZGEQPF).

On exit: the m by n matrix Q.

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSATF (CUNGQR/ZUNGQR) is called.

Constraint: LDA 2 max(1,M).

TAU(*) — complex array. Input
Note: the dimension of the array TAU must be at least max(1,K).

Onentry: further details of the elementary reflectors, as returned by FO8ASF
(CGEQRF/ZGEQRF) or FO8BSF (CGEQPF/ZGEQPF).

WORK (LWORK) — complex array. Workspace

On exit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSATF (CUNGQR/ZUNGQR) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb, where nb is
the blocksize.

Constraint: LWORK 2 max(1,N).

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed matrix Q differs from an exactly unitary matrix by a matrix E such that
lEl, = O(e),

where ¢ is the machine precision.

Further Comments

The total number of real floating-point  operations is  approximately
3
16mnk — 8(m+n)k* + %; when n = k, the number is approximately §n? (3m—n).

The real analogue of this routine is FOBAFF (SORGQR/DORGQR).
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9. Example
To form the leading 4 columns of the unitary matrix Q from the QR factorization of the matrix
A, where
0.96 — 0.81i -0.03 + 0.96i -0.91 + 2.06; —0.05 + 0.41;
-0.98 + 1.98i -1.20 + 0.19i -0.66 + 0.42i —-0.81 + 0.56i
A= 062-046i 101 +0.02i 063 - 0.17i -1.11 + 0.60i

-0.37 + 038/ 0.19 - 0.54i —0.98 - 0.36i 0.22 — 0.20i
083 + 0.51i 0.20 + 0.01i -0.17 - 0.46i 1.47 + 1.59i
1.08 — 0.28; 0.20 - 0.12i —0.07 + 1.23i 0.26 + 0.26i

The columns of Q form an orthonormal basis for the space spanned by the columns of A.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FOSATF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LWORK
PARAMETER (MMAX-8,NMAX-8,LDA—MMAX,LWORK-64*NMAX)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, M, N
CHARACTER*30 TITLE
* .. Local Arrays
complex A(LDA,NMAX), TAU(NMAX), WORK(LWORK)
CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines
EXTERNAL X04DBF, cgeqrf, cungqr
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8ATF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*x) M, N
IF (M.LE.MMAX .AND. N.LE.NMAX .AND. M.GE.N) THEN
* Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
* Compute the QR factorization of A
CALL cgeqrf(M,N,A, LDA, TAU, WORK, LHORK, INFO)
* Form the leading N columns of Q explicitly
CALL cungqr(M,N,N, A, LDA, TAU, WORK, LWORK, INFO)

* Print the leading N columns of Q only

WRITE (NOUT, *)
WRITE (TITLE,99999) N

IFAIL = 0
*
CALL XO04DBF(’General’,’ ' +M,N,A,LDA, ' Bracketed’,’F7.4’ , TITLE,
+ 'Integer’,RLABS,'Integer',CLABS,80,0,IFAIL)
*
END IF
STOP

*

99999 FORMAT (’The leading ’,I2,’ columns of Q')
END
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9.2. Program Data

FOSBATF Example Program Data
6

4 :Values of M and N
( 0.96,-0.81) (-0.03, 0.96)

(-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) tEnd of matrix A

9.3. Program Results
FOSATF Example Program Results

The leading 4 columns of Q

1 2 3 4
.3110, 0.2624) (-0.3175, 0.4835) .4966,-0.2997)
.3175,-0.6414) .2062, 0.1577) .0793,-0.3094)

( (

(- ( (

.2008, 0.1490) ( 0.4892,-0.0900) ( 0357,-0.0219) (
.1199,-0.1231) ( 0.2566,-0.3055) ( 0.4489,-0.2141) (-

.2689,-0.1652) ( 0.1697,-0.2491) ( (

.3499, 0.0907) (- ( (

AT WN
P e e T Na e
[eNeloNolo o]
[eNoNoNo o]

0491,-0.3133)
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FOSAUF (CUNMQR/ZUNMQR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FOSBAUF (CUNMQR/ZUNMQR) multiplies an arbitrary complex matrix C by the complex
unitary matrix Q from a QR factorization computed by FOSASF (CGEQRF/ZGEQRF) or
FO8BSF (CGEQPF/ZGEQPF).

Specification

SUBROUTINE FO8AUF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

ENTRY cunmgr (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

INTEGER M, N, K, LDA, LDC, LWORK, INFO

complex A(LDA, *), TAU(*), C(LDC, *), WORK(LWORK)

CHARACTER*1  SIDE, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSASF (CGEQRF/ZGEQRF) or FOS8BSF
(CGEQPF/ZGEQPF), which perform a QR factorization of a complex matrix A. FOS8ASF and
FO8BSF represent the unitary matrix Q as a product of elementary reflectors.

This routine may be used to form one of the matrix products
QcC, gfc, €Q or Q¥
overwriting the result on C (which may be any complex rectangular matrix).

A common application of this routine is in solving linear least-squares problems, as described in
the Chapter Introduction, and illustrated in Section 9 of the document for FOSASF.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
SIDE — CHARACTER*1. Input
On entry: indicates how Q or Q¥ is to be applied to C as follows:
if SIDE = 'L, then Q or Q¥ is applied to C from the left;
if SIDE = 'R', then Q or Q¥ is applied to C from the right.
Constraint: SIDE = L' or R

TRANS — CHARACTER*1. Input
On entry: indicates whether Q or Q¥ is to be applied to C as follows: |
if TRANS = 'N', then Q is applied to C;
if TRANS = 'C, then Q¥ is applied to C.
Constraint: TRANS = 'N' or 'C'.
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3:

10:

11:

12:

M - INTEGER. Input
On entry: m, the number of rows of the matrix C.
Constraint: M 2 0.

N — INTEGER. Input
On entry: n, the number of columns of the matrix C.
Constraint: N 2 0.

K — INTEGER. Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints: M 2 K 2 0 if SIDE = 'L,
N 2 K 2 0if SIDE = R'.

A(LDA,*) — complex array. Input
Note: the second dimension of the array A must be at least max(1,K).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOSASF (CGEQRF/ZGEQRF) or FO8BSF (CGEQPF/ZGEQPF).

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSAUF (CUNMQR/ZUNMQR) is called.

Constraints: LDA 2 max(1,M) if SIDE = L',
LDA 2 max(1,N) if SIDE = R

TAU (*) — complex array. Input
Note: the dimension of the array TAU must be at least max(1,K).

Onentry: further details of the elementary reflectors, as returned by FO8ASF
(CGEQRF/ZGEQRF) or FO8BSF (CGEQPF/ZGEQPF).

C(LDC,*) — complex array. Input/Output
Note: the second dimension of the array C must be at least max (1,N).
On entry: the m by n matrix C.
On exit: C is overwritten by QC or QY C or CQ¥ or CQ as specified by SIDE and TRANS.

LDC — INTEGER. Input

Onentry: the first dimension of the array C as declared in the (sub)program from which
FOSAUF (CUNMQR/ZUNMQR) is called.

Constraint. LDC 2 max(1,M).

WORK (LWORK) — complex array. Workspace

On exit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for
optimum performance.

LWORK — INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSAUF (CUNMQR/ZUNMQR) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb if SIDE = L'
and at least Mxnb if SIDE = 'R', where nb is the blocksize.

Constraints: LWORK 2 max(1,N) if SIDE = L',
LWORK 2 max(1,M) if SIDE = R
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13: INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

I INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

7. Accuracy
The computed result differs from the exact result by a matrix E such that
IEN, = O(&)ICI,,

where € is the machine precision.

8. Further Comments

The total number of real floating-point operations is approximately 8nk(2m-k) if SIDE = L'
and 8mk(2n-k) if SIDE = R'.

The real analogue of this routine is FOSAGF (SORMQR/DORMQR ).

9. Example
See the example for FOSASF (CGEQRF/ZGEQRF).
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FOSAVF (CGELQF/ZGELQF) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose
FOS8AVF (CGELQF/ZGELQF) computes the LQ factorization of a complex m by n matrix.
Specification

SUBROUTINE FO8AVF (M, N, A, LDA, TAU, WORK, LWORK, INFO)

ENTRY cgelgf (M, N, A, LDA, TAU, WORK, LWORK, INFO)

INTEGER M, N, LDA, LWORK, INFO

complex A(LDA,*), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine forms the LQ factorization of an arbitrary rectangular complex m by n matrix. No
pivoting is performed.

If m < n, the factorization is given by:
A= (L 0)Q

where L is an m by m lower triangular matrix (with real diagonal elements) and Q is an n by n
unitary matrix. It is sometimes more convenient to write the factorization as

2,

A= (L 0)( Qz)
which reduces to

A= LQI'
where Q, consists of the first m rows of Q, and Q, the remaining n—m rows.
K m > n, L is trapezoidal, and the factorization can be written

4= ()e

L,

where L, is lower triangular and L, is rectangular.
The LQ factorization of A is essentially the same as the QR factorization of A”, since

A= (L0)Q o A¥ = Q”(’*:).

The matrix Q is not formed explicitly but is represented as a product of min(m,n) elementary
reflectors (see the Chapter Introduction for details ). Routines are provided to work with Q in this
representation (see Section 8).

Note also that for any k¥ < m, the information returned in the first k¥ rows of the array A
represents an LQ factorization of the first k rows of the original matrix A.

References
None.

Parameters

M - INTEGER. Input
On entry: m, the number of rows of the matrix A.
Constraint: M 2 0.

[NP2478/16] Page 1



FOSAVF (CGELQF/ZGELQF) F08 ~ Least-squares and Eigenvalue Problems (LAPACK)

2:

3:

Page 2

N - INTEGER. Input
On entry: n, the number of columns of the matrix A.
Constraint: N 2 0.

A(LDA *) — complex array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the m by n matrix A.

Onexit: if m < n, the elements above the diagonal are overwritten by details of the unitary
matrix Q and the lower triangle is overwritten by the corresponding elements of the m by m
lower triangular matrix L.

If m > n, the strictly upper triangular part is overwritten by details of the unitary matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n
lower trapezoidal matrix L.

The diagonal elements of L are real.

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FO8AVF (CGELQF/ZGELQF) is called.

Constraint: LDA 2 max(1,M).

TAU(*) — complex array. Output
Note: the dimension of the array TAU must be at least max(1,min(M,N)).
On exit: further details of the unitary matrix Q.

WORK (LWORK) — complex array. Workspace
On exit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FO8AVF (CGELQF/ZGELQF) is called.

Suggested value: for optimum performance LWORK should be at least Mxnb, where nb is
the blocksize.

Constraint: LWORK 2 max(1,M).

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed factorization is the exact factorization of a nearby matrix A + E, where

lENl, = O(8)lAll,,

and ¢ is the machine precision.
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8. Further Comments
The total number of real floating-point operations is approximately §m?(3n—m) if m < n or
$n*(3m-n) if m > n.

To form the unitary matrix Q this routine may be followed by a call to FOSAWF
(CUNGLQ/ZUNGLQ):

CALL CUNGLQ (N,N,MIN(M,N),A,LDA, TAU, WORK, LKORK, INFO)

but note that the first dimension of the array A, specified by the parameter LDA, must be at least
N, which may be larger than was required by FOSAVF.

When m < n, it is often only the first m rows of Q that are required, and they may be formed by
the call:

CALL CUNGLQ (M,N,M,A,LDA, TAU, WORK, LWORK, INFO)

To apply Q to an arbitrary complex rectangular matrix C, this routine may be followed by a call
to FOBAXF (CUNMLQ/ZUNMLQ). For example,

CALL CUNMLQ (’'Left’,’Conjugate Transpose’ M,P,MIN(M,N),A,LDA, TAU,
+ C,LDC, WORK, LWORK, INFO)

forms the matrix product C = Q”C, where C is m by p.
The real analogue of this routine is FOSAHF (SGELQF/DGELQF).

9. Example
To find the minimum-norm solutions of the under-determined systems of linear equations
Ax, = b, and Ax, = b,
where b, and b, are the columns of the matrix B,
( 0.28 - 036 0.50 — 0.86i -0.77 — 0.48i 1.58 + 0.661')
A=

—0.50 - 1.10i -1.21 + 0.76i -0.32 — 0.24i -0.27 — 1.15i
0.36 — 0.51i —0.07 + 1.33i -0.75 + 0.47i —-0.08 + 1.01i

and
(—1.35 + 0.19i 4.83 - 2.67i)
B = .

9.41 - 3.56i -7.28 + 3.34i
-7.57 + 6.93i 0.62 + 4.53i

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Plesse read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FOSAVF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LDB, NRHMAX, LWORK
PARAMETER (MMAX=8, NMAX=8, LDA=MMAX, LDB=NMAX, NRHMAX=NMAX,
+ LWORK=64*NMAX)
complex ZERO, ONE
PARAMETER (ZERO=(0.0€0,0.0e0),ONE=(1.0e0, 0.0e0))
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, M, N, NRHS
* .. Local Arrays ..
complex A(LDA,NMAX), B(LDB,NRHMAX), TAU(NMAX),
+ WORK ( LWORK)
CHARACTER CLABS(1l), RLABS(1)
* .. External Subroutines ..
EXTERNAL FO6THF, X04DBF, cgelgf, ctrsm, cunmliq
* .. Executable Statements ..

WRITE (NOUT,*) ’'FO8AVF Example Program Results’
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9.2.

9.3.

* Skip heading in data file
READ (NIN, *)
READ (NIN,*) M, N, NRHS
IF (M.LE.MMAX .AND. N.LE.NMAX .AND. M.LE.N .AND. NRHS.LE.NRHMAX)
+ THEN
* Read A and B from data file

READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
READ (NIN,*) ((B(I,J),J=1,NRHS),I=1,6M)

* Compute the LQ factorization of A
CALL cgelgf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
* Solve L*Y = B, storing the result in B

CALL ctrsm(’ Left’,’ Lower’,’No transpose’,’Non-Unit’,M,NRHS,ONE,

+ A,LDA,B,LDB)
*
* Set rows (M+l) to N of B to zero
*
IF (M.LT.N) CALL FO6THF(’General’,N-M,NRHS, ZERO, ZERO,B(M+1,1),
+ LDB)
*
* Compute minimum-norm solution X = (Q**H)*B in B

CALL cunmlg(’Left’,’Conjugate transpose’,N,NRHS,M, A, LDA, TAU, B,
+ LDB, WORK, LWORK, INFO)

* Print minimum-norm solution(s)

WRITE (NOUT, *)

IFAIL = 0
*
CALL XO04DBF('’General’,’ ’,N,NRHS,B,LDB,’Bracketed’,’'F7.4’,
+ 'Minimum-norm solution(s)’,’Integer’,RLABS,
+ ’Integer’ ,CLABS, 80,0, IFAIL)
*
END IF
STOP
END
Program Data
FOBAVF Example Program Data
3 4 2 :Values of M, N and NRHS
( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A
(-1.35, 0.19) ( 4.83,-2.67)
( 9.41,-3.56) (-7.28, 3.34)
(-7.57, 6.93) ( 0.62, 4.53) :End of matrix B
Program Results

FOBAVF Example Program Results

Minimum-norm solution(s)

1 2
(-2.8501, 6.4683) (-1.1682,-1.8886)
( 1.6264,-0.7799) ( 2.8377, 0.7654)
( 6.9290, 4.6481) (-1.7610,-0.7041)
( 1.4048, 3.2400) ( 1.0518,-1.6365)

o wh P
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FOSAWF (CUNGLQ/ZUNGLQ) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOS8AWF (CUNGLQ/ZUNGLQ) generates all or part of the complex unitary matrix Q from an
LQ factorization computed by FOSAVF (CGELQF/ZGELQF).

Specification
SUBROUTINE FO8AWF (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
ENTRY cunglg (M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER M, N, K, LDA, LWORK, INFO
complex A(LDA, *), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSAVF (CGELQF/ZGELQF), which
performs an LQ factorization of a complex matrix A. FOSAVF represents the unitary matrix Q as
a product of elementary reflectors.

This routine may be used to generate Q explicitly as a square matrix, or to form only its leading
TOwS.

Usually Q is determined from the LQ factorization of a p by n matrix A with p < n. The whole
of Q may be computed by:

CALL CUNGLQ (N,N,P,A,LDA, TAU, WORK, LWORK, INFO)
(note that the array A must have at least n rows) or its leading p rows by:

CALL CUNGLQ (P,N,P,A,LDA, TAU, WORK, LWORK, INFO)

The rows of Q returned by the last call form an orthonormal basis for the space spanned by the
rows of A; thus FOSAVF followed by FOBAWF can be used to orthogonalise the rows of A.

The information returned by the LQ factorization routines also yields the LQ factorization of the
leading k rows of A, where k < p. The unitary matrix arising from this factorization can be
computed by:

CALL CUNGLQ (N,N,K,A,LDA, TAU, WORK, LWORK, INFO)
or its leading k rows by:

CALL CUNGLQ (K,N,K,A,LDA, TAU, WORK, LWORK, INFO)

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters

M - INTEGER. Input
On entry: m, the number of rows of the matrix Q.
Constraint: M 2 0.

N — INTEGER. Input
On entry: n, the number of columns of the matrix Q.
Constraint: N 2 M.
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3:

K - INTEGER. Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.
Constraint: M 2 K 2 0.

A(LDA,*) — complex array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FO8AVF (CGELQF/ZGELQF).

On exit: the m by n matrix Q.

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOS8AWF (CUNGLQ/ZUNGLAQ) is called.

Constraint: LDA 2 max(1,M).

TAU(*) — complex array. Input
Note: the dimension of the array TAU must be at least max(1,K).

Onentry: further details of the elémentary reflectors, as returned by FO8AVF
(CGELQF/ZGELQF).

WORK (LWORK) — complex array. Workspace

Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSAWF (CUNGLQ/ZUNGLQ) is called.

Suggested value: for optimum performance LWORK should be at least Mxnb, where nb is
the blocksize.

Constraint: LWORK 2 max(1,M).

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed matrix Q differs from an exactly unitary matrix by a matrix E such that
IEI, = O(e),

where € is the machine precision.

Further Comments

The total number of real floating-point  operations is  approximately
16k*

16mnk — 8(m+n)k> + = when m = k, the number is approximately ym?(3n—m).

The real analogue of this routine is FOSAJF (SORGLQ/DORGLQ).
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9. Example
To form the leading 4 rows of the unitary matrix Q from the LQ factorization of the matrix A,
where
0.28 — 0.36i 0.50 — 0.86i —0.77 — 0.48{ 1.58 + 0.66i
A = [-050 - 1.10i -1.21 + 0.76i -0.32 - 0.24i -0.27 - 1.15i ).
0.36 — 0.51i -0.07 + 1.33i -0.75 + 0.47i -0.08 + 1.01i

The rows of Q form an orthonormal basis for the space spanned by the rows of A.

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users® Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FOSBAWF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LWORK
PARAMETER (MMAX=8, NMAX=8, LDA=MMAX, LWORK=64 *MMAX)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, M, N
CHARACTER*30 TITLE
* .. Local Arrays ..
complex A(LDA,NMAX), TAU(NMAX), WORK(LWORK)
CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines ..
EXTERNAL X04DBF, cgelgf, cunglq
* .. Executable Statements ..
WRITE (NOUT,*) ’'FOSAWF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*x) M, N
IF (M.LE.MMAX .AND. N.LE.NMAX .AND. M.LE.N) THEN
* Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
* Compute the LQ factorization of A
CALL cgelgf(M,N, A, LDA, TAU, WORK, LWORK, INFO)
* Form the leading M rows of Q explicitly
CALL cunglg(M,N,M, A, LDA, TAU, WORK, LWORK, INFO)
* Print the leading M rows of Q only

WRITE (NOUT, *)
WRITE (TITLE, 99999) M

IFAIL = 0
*
CALL XO04DBF(’General’,’ ’',M,N,A,LDA,’Bracketed’,’F7.4’,TITLE,
+ ’ Integer’,RLABS, ' Integer’, CLABS, 80,0, IFAIL)
*
END IF
STOP

*

99999 FORMAT (’The leading ’,I2,’ rows of Q')
END
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9.2. Program Data

FOSAWF Example Program Data
3 4
( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01)

9.3. Program Results
FO8AWF Example Program Results

The leading 3 rows of Q
2

:Values of M and N

:End of matrix A

3 4

1
1 (-0.1258, 0.1618) (-0.2247, 0.3864) ( 0.3460, 0.2157) (=0.7099,-0.2966)
2 (-0.1163,-0.6380) (-0.3240, 0.4272) (-0.1995,-0.5009) (-0.0323,-0.0162)
3 (-0.4607, 0.1090) ( 0.2171,-0.4062) ( 0.2733,-0.6106) (-0.0994,-0.3261)

Page 4 (last)
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FOSAXF (CUNMLQ/ZUNMLQ) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

FOSAXF (CUNMLQ/ZUNMLQ) multiplies an arbitrary complex matrix C by the complex
unitary matrix Q from an LQ factorization computed by FOSAVF (CGELQF/ZGELQF).

2. Specification
SUBROUTINE FO8AXF (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,

1 LWORK, INFO)

ENTRY cunmlgq (SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

INTEGER M, N, K, LDA, LDC, LWORK, INFO

complex A(LDA,*), TAU(*), C(LDC, *), WORK(LWORK)

CHARACTER*1  SIDE, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine is intended to be used after a call to FOSAVF (CGELQF/ZGELQF), which
performs an LQ factorization of a complex matrix A. FOBAVF represents the unitary matrix Q as
a product of elementary reflectors.

This routine may be used to form one of the matrix products
Qc, g%c, €@ or CQ*,
overwriting the result on C (which may be any complex rectangular matrix).

4, References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

5. Parameters
1: SIDE — CHARACTER*1. Input
On entry: indicates how Q or 0% is to be applied to C as follows:
if SIDE = 'L, then Q or Q¥ is applied to C from the left;
if SIDE = 'R', then Q or Q¥ is applied to C from the right.
Constraint. SIDE = L' or R'.

2:  TRANS - CHARACTER¥*1. Input
On entry: indicates whether Q or 0" is to be applied to C as follows:
if TRANS = 'N, then Q is applied to C;
if TRANS = 'C', then Q" is applied to C.
Constraint: TRANS = 'N' or 'C'.

3: M - INTEGER. Input
On entry: m, the number of rows of the matrix C.
Constraint: M 2 0.
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4:

10:

11:

12:

13:

Page 2

N — INTEGER. Input
On entry: n, the number of columns of the matrix C.
Constraint: N 2 0.

K — INTEGER. Input
On entry: k, the number of elementary reflectors whose product defines the matrix Q.

Constraints: M 2 K 2 0 if SIDE = 'L/,
N 2K =2 0if SIDE = R".

A(LDA*) — complex array. Input

Note: the second dimension of the array A must be at least max(1,M) if SIDE = 'L' and at
least max(1,N) if SIDE = R'.

Onentry: details of the vectors which define the elementary reflectors, as returned by
FO8AVF (CGELQF/ZGELQF).

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the ( sub)program from which
FOS8AXF (CUNMLQ/ZUNMLQ) is called.

Constraint: LDA 2 max(1,K).

TAU(*) — complex array. Input
Note: the dimension of the array TAU must be at least max(1,K).

Onentry: further details of the elementary reflectors, as returned by FOS8AVF
(CGELQF/ZGELQF).

C(LDC,*) — complex array. Input/ Output
Note: the second dimension of the array C must be at least max(1,N).
On entry: the m by n matrix C.
On exit: C is overwritten by QC or Q”C or CQ¥ or CQ as specified by SIDE and TRANS.

LDC — INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
FO8AXF (CUNMLQ/ZUNMLQ) is called.

Constraint: LDC 2 max(1,M).

WORK (LWORK) — complex array. Workspace

Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FO8AXF (CUNMLQ/ZUNMLQ) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb if SIDE = L'
and at least Mxnb if SIDE = 'R', where nb is the blocksize.

Constraints: LWORK 2 max(1,N) if SIDE = 'L/,
LWORK 2 max(1,M) if SIDE = R'.

INFO — INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).
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6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

7. Accuracy
The computed result differs from the exact result by a matrix E such that
lEN, = O(8ICI,,

where ¢ is the machine precision.

8. Further Comments

The total number of real floating-point operations is approximately 8nk(2m—k) if SIDE = L'
and 8mk(2n-k) if SIDE = R'.

The real analogue of this routine is FOBAKF (SORMLQ/DORMLQ).

9. Example
See the example for FOBAVF (CGELQF/ZGELQF).
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FOSBEF (SGEQPF/DGEQPF) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FOSBEF (SGEQPF/DGEQPF) computes the QR factorization, with column pivoting, of a real m
by n matrix.

Specification
SUBROUTINE FO8BEF (M, N, A, LDA, JPVT, TAU, WORK, INFO)
ENTRY sgeqpf (M, N, A, LDA, JPVT, TAU, WORK, INFO)
INTEGER M, N, LDA, JPVT(*), INFO
real A(LDA,*), TAU(*), WORK(*)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine forms the QR factorization with column pivoting of an arbitrary rectangular real m
by n matrix.
If m 2 n, the factorization is given by:

= ofg)

where R is an n by n upper triangular matrix, Q is an m by m orthogonal matrix and P is an n by
n permutation matrix. It is sometimes more convenient to write the factorization as

ap = @, 2)(()

which reduces to
AP = Q\R,
where Q, consists of the first n columns of Q, and Q, the remaining m—n columns.
K m < n, R is trapezoidal, and the factorization can be written
AP = Q(R, R,),
where R, is upper triangular and R, is rectangular.
The matrix Q is not formed explicitly but is represented as a product of min(m,n) elementary

reflectors (see the Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 8).

Note also that for any k < n, the information returned in the first k columns of the array A
represents a QR factorization of the first k columns of the permuted matrix AP.

The routine allows specified columns of A to be moved to the leading columns of AP at the start
of the factorization and fixed there. The remaining columns are free to be interchanged so that at
the ith stage the pivot column is chosen to be the column which maximizes the 2-norm of
elements i to m over columns i to n.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §5.4.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.
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Parameters

M — INTEGER. Input
On entry: m, the number of rows of the matrix A.
Constraint: M 2 0.

N - INTEGER. Input
On entry: n, the number of columns of the matrix A.
Constraint: N 2 0.

A(LDA*) — real array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the m by n matrix A.

Onexit: if m 2 n, the elements below the diagonal are overwritten by details of the
orthogonal matrix Q and the upper triangle is overwritten by the corresponding elements of
the n by n upper triangular matrix R.

Ifm < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix
Q and the remaining elements are overwritten by the corresponding elements of the m by n
upper trapezoidal matrix R.

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOS8BEF (SGEQPF/DGEQPF) is called.

Constraint: LDA 2 max(1,M).

JPVT(*) — INTEGER array. Input/ Output
Note: the dimension of the array JPVT must be at least max(1,N).

Onentry: if JPVT (i) # 0, then the ith column of A is moved to the beginning of AP before
the decomposition is computed and is fixed in place during the computation. Otherwise, the
ith column of A is a free column (i.e. one which may be interchanged during the
computation with any other free column).

On exit: details of the permutation matrix P. More precisely, if JPVT(i) = k, then the kth
column of A is moved to become the ith column of AP; in other words, the columns of AP
are the columns of A in the order JPVT(1),JPVT(2),...,JPVT(n).

TAU(*) — real array. Output

Note: the dimension of the array TAU must be at least max(1,min(M,N)).
On exit: further details of the orthogonal matrix Q.

WORK (*) — real array. Workspace
Note: the dimension of the array WORK must be at least max(1,3*N).

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.
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7. Accuracy
The computed factorization is the exact factorization of a nearby matrix A + E, where

IEI, = O(&)llAll

and € is the machine precision.

8. Further Comments

The total number of floating-point operations is approximately n>(Bm-n) if m2n or
im>(3n-m) if m < n.

To form the orthogonal matrix Q this routine may be followed by a call to FOSBAFF
(SORGQR/DORGQR):

CALL SORGQR (M,M,MIN(M,N),A,LDA, TAU, WORK, LWORK, INFO)

but note that the second dimension of the array A must be at least M, which may be larger than
was required by FOSBEF.

When m 2 n, it is often only the first n columns of Q that are required, and they may be formed
by the call:

CALL SORGQR (M,N,N,A,LDA, TAU, WORK, LWORK, INFO)

To apply Q to an arbitrary real rectangular matrix C, this routine may be followed by a call to
FOSAGF (SORMQR/DORMQR). For example,

CALL SORMQR (’Left’,’Transpose’,M,P,MIN(M,N),A,LDA, TAU,C, LDC,WORK,
+ LWORK, INFO)

forms C = QTC, where C is m by p.
To compute a QR factorization without column pivoting, use FOSBAEF (SGEQRF/DGEQREF).
The complex analogue of this routine is FO8BSF (CGEQPF/ZGEQPF).

9. Example
To solve the linear least-squares problem
minimize |JAx;—-b;|l, fori = 1,2
where b, and b, are the columns of the matrix B,

-0.09 0.14 -046 068 129 -0.01 -0.04
-156 020 029 1.09 0.51 0.04 -0.03
where A = | -1.48 -043 0.89 -0.71 -096 | and B = 005 0011}.
-1.09 084 077 211 -1.27 -0.03 -0.02
0.08 055 -1.13 0.14 1.74 0.02 0.05
-159 -0.72 106 124 034 -0.06 0.07

Here A is approximately rank-deficient, and hence it is preferable to use FOS8BEF
(SGEQPF/DGEQPF) rather than FOSAEF (SGEQRF/DGEQRF).

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8BEF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LDB, LDX, NRHMAX, LWORK
PARAMETER (MMAX=8 , NMAX=8 , LDA=MMAX, LDB=MMAX, LDX=MMAX,
+ NRHMAX=NMAX, LWHORK=64 *NMAX)
real ZERO
PARAMETER (ZERO=0.0e0)
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* .. Local Scalars ..
real TOL
INTEGER I, IFAIL, INFO, J, K, M, N, NRHS
* .. Local Arrays ..
real A(LDA,NMAX), B(LDB,NRHMAX), TAU(NMAX),
+ WORK (LWORK), X(LDX,NRHMAX)
INTEGER JPVT (NMAX)
* .. External Subroutines ..
EXTERNAL sgeqpf, sormgqr, strsv, FO6DBF, FO6FBF, X04CAF
* .. Intrinsic Functions ..
INTRINSIC ABS
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8BEF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) M, N, NRHS
IF (M.LE.MMAX .AND. N.LE.NMAX .AND. M.GE.N .AND. NRHS.LE .NRHMAX)
+ THEN
* Read A and B from data file

READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
READ (NIN,*) ((B(I,J),J=1,NRHS),I=1,M)

* Initialize JPVT to be zero so that all columns are free
CALL FO6DBF(N,0,JPVT, 1)
* Compute the QR factorization of A
CALL sgeqgpf(M,N,A,LDA, JPVT, TAU, WORK, INFO)
* Choose TOL to reflect the relative accuracy of the input data
TOL = 0.01e0
* Determine which columns of R to use
DO 20 K =1, N
IF (ABS(A(K,K)).LE.TOL*ABS(A(1,1))) GO TO 40
20 CONTINUE
* Compute C = (Q**T)*B, storing the result in B
40 K=K-1

CALL sormgr(’Left’,’ Transpose’,M,NRHS,N,A, LDA, TAU, B, LDB, WORK,
+ LWORK, INFO)

* Compute least-squares solution by backsubstitution in R*B = C
DO 60 I = 1, NRHS

CALL strsv(’'Upper’,’No transpose’,’Non-Unit’,K,A,LDA,B(1,I),
+ 1)

* Set the unused elements of the I-th solution vector to zero
CALL FO6FBF(N-K,ZERO,B(K+1,I),1)
60 CONTINUE
* Unscramble the least-squares solution stored in B
DO 100 I =1, N
DO 80 J = 1, NRHS
X(JPVT(I),J) = B(I,J)

80 CONTINUE
100 CONTINUE
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+

Print least-squares solution

WRITE (NOUT, *)
IFAIL = 0

CALL X04CAF(’General’,’

END IF
STOP
END

9.2. Program Data
FOS8BEF Example Program Data

6 5
-0.09
-1.56
-1.48
-1.09

0.08
-1.59
-0.01

0.04

0.05
-0.03

0.02
-0.06

2
0.14
0.20

-0.43
0.84
0.55

-0.72

-0.04

-0.03
0.01

-0.02
0.05
0.07

9.3. Program Results
FO8BEF Example Program Results

-0.46
0.29
0.89
0.77

-1.13
1.06

FOSBEF (SGEQPF/DGEQPF)

’ ,N,NRHS, X, LDX,

' Least-squares solution’,IFAIL)

0.68
1.09
-0.71
2.11
0.14
1.24

Least-squares solution

0.34

:Values of M, N and NRHS

:End of matrix A

:End of matrix B

1 2

1 -0.0370 -0.0044

2 0.0647 -0.0335

3 0.0000 0.0000

4 -0.0515 0.0018

5 0.0066 0.0102
(NP2478/16)
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FO8BSF (CGEQPF/ZGEQPF) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FO8BSF (CGEQPF/ZGEQPF) computes the QR factorization, with column pivoting, of a
complex m by n matrix.

Specification
SUBROUTINE FO8BSF (M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO)
ENTRY cgeqpf (M, N, A, LDA, JPVT, TAU, WORK, RWORK, INFO)
INTEGER M, N, LDA, JPVT(*), INFO
real RWORK (*)
complex A(LDA, *), TAU(*), WORK(*)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine forms the QR factorization with column pivoting of an arbitrary rectangular complex
m by n matrix.

If m 2 n, the factorization is given by:

= o)

where R is an n by n upper triangular matrix (with real diagonal elements), Q is an m by m
unitary matrix and P is an n by n permutation matrix. It is sometimes more convenient to write
the factorization as

AP = @, 2)(f)

which reduces to
AP = Q|R,
where Q, consists of the first n columns of Q, and Q, the remaining m—n columns.
If m < n, R is trapezoidal, and the factorization can be written
AP = Q(R, R;),
where R, is upper triangular and R, is rectangular.
The matrix Q is not formed explicitly but is represented as a product of min(m,n) elementary

reflectors (see the Chapter Introduction for details ). Routines are provided to work with Q in this
representation (see Section 8).

Note also that for any k < n, the information returned in the first X columns of the array A
represents a QR factorization of the first £ columns of the permuted matrix AP.

The routine allows specified columns of A to be moved to the leading columns of AP at the start
of the factorization and fixed there. The remaining columns are free to be interchanged so that at
the ith stage the pivot column is chosen to be the column which maximizes the 2-norm of
elements i to m over columns i to n.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §5.4.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.
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Page 2

Parameters
M - INTEGER. Input

On entry: m, the number of rows of the matrix A.
Constraint: M 2 0.

N - INTEGER. Input

On entry: n, the number of columns of the matrix A.
Constraint: N 2 0.

A(LDA,*) — complex array. Input/ Output

Note: the second dimension of the array A must be at least max(1,N).
On entry: the m by n matrix A.

Onexit: if m 2 n, the elements below the diagonal are overwritten by details of the unitary
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n
upper triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the unitary matrix Q
and the remaining elements are overwritten by the corresponding elements of the m by n
upper trapezoidal matrix R.

The diagonal elements of R are real.

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FO8BSF (CGEQPF/ZGEQPF) is called.

Constraint: LDA 2 max(1,M).

JPVT(*) — INTEGER array. Input/ Output

Note: the dimension of the array JPVT must be at least max(1,N).

On entry: if JPVT (i) # O, then the ith column of A is moved to the beginning of AP before
the decomposition is computed and is fixed in place during the computation. Otherwise, the
ith column of A is a free column (i.e. one which may be interchanged during the
computation with any other free column).

On exit: details of the permutation matrix P. More precisely, if JPVT (i) = k, then the kth
column of A is moved to become the ith column of AP; in other words, the columns of AP
are the columns of A in the order JPVT (1) JPVT(2),...,JPVT(n).

TAU(*) — complex array. Output

Note: the dimension of the array TAU must be at least max(1,min(M,N)).
On exit: further details of the unitary matrix Q.

WORK(*) — complex array. Workspace

Note: the dimension of the array WORK must be at least max(1,3*N).

RWORK (*) — real array. Workspace

Note: the dimension of the array RWORK must be at least max(1,2*N).

INFO - INTEGER. Output

Onexit: INFO = 0 unless the routine detects an error (see Section 6).
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6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

7. Accuracy
The computed factorization is the exact factorization of a nearby matrix A + E, where

IEN, = O(e)lAll,,

and € is the machine precision.

8. Further Comments
The total number of real floating-point operations is approximately $n*(3m—n) if m 2 n or
m2(3n-m) if m < n.
To form the unitary matrix Q this routine may be followed by a call to FOSATF
(CUNGQR/ZUNGQR):
CALL CUNGQR (M,M,MIN(M,N),A,LDA, TAU, WORK, LWORK, INFO)

but note that the second dimension of the array A must be at least M, which may be larger than
was required by FOS8BSF.

When m 2 n, it is often only the first n columns of Q that are required, and they may be formed
by the call:

CALL CUNGQR (M,N,N,A,LDA, TAU, WORK, LWORK, INFO)

To apply Q to an arbitrary complex rectangular matrix C, this routine may be followed by a call
to FOSAUF (CUNMQR/ZUNMQR). For example,

CALL CUNMQR (’Left’,’Conjugate Transpose’,M,P,MIN(M,N),A,LDA, TAU,
+ C, LDC, WORK, LWORK, INFO)

forms C = Q¥C, where C is m by p.
To compute a QR factorization without column pivoting, use FOSBASF (CGEQRF/ZGEQRF).
The real analogue of this routine is FOSBEF (SGEQPF/DGEQPF).

9. Example
To solve the linear least-squares problem
minimize ||Ax;-b,||, for i = 1,2
where b, and b, are the columns of the matrix B,
0.47 - 0.34i -040 + 0.54i 0.60 + 0.01; 0.80 - 1.02i
-0.32 - 0.23i -0.05 + 0.20i -0.26 - 0.44i —0.43 + 0.17i
A=} 035-060i -052 - 034i 0.87 — 0.11i —0.34 - 0.09i

0.89 + 0.71i -0.45 — 0.45i -0.02 - 0.57i 1.14 - 0.78i
-0.19 + 0.06i 0.11 — 0.85/ 1.44 + 0.80i 0.07 + 1.14i

and
-0.85 - 1.63i 249 + 4.01i
-2.16 + 3.52i -0.14 + 7.98i
B =1} 457 - 571i 836 - 0.28i].

6.38 — 7.40i -3.55 + 1.29i
841 + 9.39i —-6.72 + 5.03i

Here A is approximately rank-deficient, and hence it is preferable to use FO8BSF
(CGEQPF/ZGEQPF) rather than FOSASF (CGEQRF/ZGEQRF).
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO08BSF Example Program Text
* Mark 16 Release. NAG Copyright 1992,
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LDB, LDX, NRHMAX, LWORK
PARAMETER (MMAX=8, NMAX=8 , LDA=MMAX, LDB=MMAX, LDX=MMAX,
+ NRHMAX=NMAX, LWORK=64 *NMAX)
complex ZERO
PARAMETER (ZERO=(0.0e0,0.0e0))
* .. Local Scalars ..
real TOL
INTEGER I, IFAIL, INFO, J, K, M, N, NRHS
* .. Local Arrays ..
complex A(LDA,NMAX), B(LDB,NRHMAX), TAU(NMAX),
+ WORK(LWORK), X(LDX,NRHMAX)
real RWORK ( 2*NMAX )
INTEGER JPVT (NMAX)
CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines ..
EXTERNAL FO6DBF, FO6HBF, XO04DBF, cgegpf, ctrsv, cunmgqr
* .. Intrinsic Functions ..
INTRINSIC ABS
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO08BSF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) M, N, NRHS .
IF (M.LE.MMAX .AND. N.LE.NMAX .AND. M.GE.N .AND. NRHS.LE.NRHMAX)
+ THEN
* Read A and B from data file

READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
READ (NIN,*) ((B(I,J),J=1,NRHS),I=1,M)

* Initialize JPVT to be zero so that all columns are free
CALL FO06DBF(N,0,JPVT,1)
* Compute the QR factorization of A
CALL cgegpf(M,N, A, LDA, JPVT, TAU, WORK, RWORK, INFO)
* Choose TOL to reflect the relative accuracy of the input data
TOL = 0.01e0
* Determine which columns of R to use
DO 20 K=1, N
IF (ABS(A(K,K)).LE.TOL*ABS(A(1,1))) GO TO 40
20 CONTINUE
* Compute C = (Q**H)*B, storing the result in B
40 K=K-1

CALL cunmgqr(’Left’,’Conjugate Transpose’,M,NRHS,K,A,LDA,TAU,B,
+ LDB, WORK, LWORK, INFO)

*

Compute least-squares solution by backsubstitution in R*B = C

DO 60 I = 1, NRHS
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60

80
100

*

+
+

END

CALL ctrsv(’Upper’,’No transpose’,’Non-Unit’,K,A,LDA,B(1,1I),
1)

Set the unused elements of the I-th solution vector to zero
CALL FO6HBF(N-K,ZERO,B(K+1,I),1)
CONTINUE
Unscramble the least-squares solution stored in B
DO 100 I = 1, N
DO 80 J = 1, NRHS
X(JPVT(I),J) = B(I,J)
CONTINUE
CONTINUE

Print least-squares solution

WRITE (NOUT, *)
IFAIL = 0

CALL X04DBF(’General’,’ '’ ,N,NRHS,X,LDX,’Bracketed’,’F7.4',
'Least-squares solution’,’Integer’,RLABS,’Integer’,
CLABS, 80,0, IFAIL)

IF

STOP

END

9.2. Program Data
FO8BSF Example Program Data

5 4 2 :Values of M, N and NRHS
( 0.47,-0.34) (-0.40, 0.54) ( 0.60, 0.01) ( 0.80,-1.02)

(-0.32,-0.23) (-0.05, 0.20) (-0.26,-0.44) (-0.43, 0.17)

( 0.35,-0.60) (-0.52,-0.34) ( 0.87,-0.11) (-0.34,-0.09)

( 0.89, 0.71) (-0.45,-0.45) (-0.02,-0.57) ( 1.14,-0.78)

(-0.19, 0.06) ( 0.11,-0.85) ( 1.44, 0.80) ( O. 07, 1.14) :End of matrix A
(-0.85,-1.63) ( 2.49, 4.01)

(-2.16, 3.52) (-0.14, 7.98)

( 4.57,-5.71) ( 8.36,-0.28)

( 6.38,-7.40) (-3. 55, 1.29)

( 8.41, 9.39) (-6. 5.03) :End of matrix B

9.3. Program Results
FO8BSF Example Program Results
Least-squares solution
1 2

1 ( 0.0000, 0.0000) ( 0.0000, 0.0000)

2 ( 2.6925, 8.0446) (-2.0563,-2.9759)

3 ( 2.7602, 2.5455) ( 1.0588, 1.4635)

4 ( 2.7383, 0.5123) (-1.4150, 0.2982)
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FOS8FEF (SSYTRD/DSYTRD) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose
FO8FEF (SSYTRD/DSYTRD) reduces a real symmetric matrix to tridiagonal form.
Specification
SUBROUTINE FOS8FEF (UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)
ENTRY ssytrd (UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)
INTEGER N, LDA, LWORK, INFO
real A(LDA,*), D(*), E(*), TAU(*), WORK(LWORK)

CHARACTER*1  UPLO
The ENTRY statement enables the routine to be called by its LAPACK name.

Description
This routine reduces a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal
similarity transformation: A = QTQ”.

The matrix Q is not formed explicitly but is represented as a product of n—1 elementary reflectors
(see the Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 8).

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §8.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
UPLO — CHARACTER*1. Input
On entry: indicates whether the upper or lower triangular part of A is stored as follows:
if UPLO = 'U’, then the upper triangular part of A is stored;
if UPLO = 'L, then the lower triangular part of A is stored.
Constraint: UPLO = 'U' or L\

N — INTEGER. Input
On entry: n, the order of the matrix A.
Constraint: N 2 0,

A(LDA*) — real array. Input/ Outpur
Note: the second dimension of the array A must be at least max(1,N ).
Onentry: the n by n symmetric matrix A. If UPLO = 'U’, the upper triangle of A must be
stored and the elements of the array below the diagonal are not referenced; if UPLO = L',

the lower triangle of A must be stored and the elements of the array above the diagonal are
not referenced.

On exit: A is overwritten by the tridiagonal matrix T and details of the orthogonal matrix Q
as specified by UPLO.

[NP2478/16] Page 1



FOSFEF (SSYTRD/DSYTRD) FO08 — Least-squares and Eigenvalue Problems (LAPACK)

4:

10:

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSFEF (SSYTRD/DSYTRD) is called.

Constraint: LDA 2 max(1,N).

D(*) — real array. Output
Note: the dimension of the array D must be at least max(1,N).
On exit: the diagonal elements of the tridiagonal matrix T.

E(*) — real array. Output
Note: the dimension of the array E must be at least max(1,N-1).
On exit: the off-diagonal elements of the tridiagonal matrix 7.

TAU(*) — real array. Output
Note: the dimension of the array TAU must be at least max (1,N-1).
On exit: further details of the orthogonal matrix Q.

WORK (LWORK) — real array. Workspace

Onexit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSFEF (SSYTRD/DSYTRD) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb, where nb is
the blocksize.

Constraint: LWORK 2 1.

INFO — INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix A + E, where
IEl, = c(n)elAll,,

c(n) is a modestly increasing function of n, and € is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors
in the computation, but this does not affect the stability of the eigenvalues and eigenvectors.

Further Comments

The total number of floating-point operations is approximately 4n’.

To form the orthogonal matrix Q this routine may be followed by a call to FO8FFF
(SORGTR/DORGTR):

CALL SORGTR (UPLO,N,A,LDA, TAU, WORK, LWORK, INFO)

To apply Q to an n by p real matrix C this routine may be followed by a call to FOSFGF
(SORMTR/DORMTR). For example,
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CALL SORMTR (’Left’,UPLO,’No Transpose’,N,P,A,LDA,TAU,C,LDC,
+ WORK, LWORK, INFO)

forms the matrix product QC.
The complex analogue of this routine is FOSFSF (CHETRD/ZHETRD).

9. Example
To reduce the matrix A to tridiagonal form, where

207 3.87 420 -1.15
3.87 -0.21 1.87 0.63
420 187 115 206]
-1.15 0.63 2.06 -1.81

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Easential Introduction to this
manual, the results produced may not be identical for all implementations.

A=

* FOSFEF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LWORK
PARAMETER (NMAX=8, LDA=NMAX, LWORK=64*NMAX )
* .. Local Scalars ..
INTEGER I, INFO, J, N
CHARACTER UPLO
* .. Local Arrays ..
real A(LDA,NMAX), D(NMAX), E(NMAX-1), TAU(NMAX-1),
+ WORK ( LWORK)
* .. External Subroutines
EXTERNAL ssytrd
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8FEF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read A from data file

READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN

READ (NIN,*) ((A(I,J),J=I,N),I=1,N)
ELSE IF (UPLO.EQ.’L’) THEN

READ (NIN, *) ((A(1,J),J=1,I),I=1,N)
END IF

*

Reduce A to tridiagonal form

CALL ssytrd(UPLO,N,A,LDA,D,E, TAU, WORK, LWORK, INFO)

*

Print tridiagonal form

WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Diagonal’
WRITE (NOUT,99999) (D(I),I=1,N)
WRITE (NOUT,*) ‘Off-diagonal’
WRITE (NOUT,99999) (E(I),I=1,N-1)
END IF
STOP
*
99999 FORMAT (1X,8F9.4)
END

[NP2478116) Page 3



FOSFEF (SSYTRD/DSYTRD) FO08 - Least-squares and Eigenvalue Problems (LAPACK)

9.2. Program Data
FOB8FEF Example Program Data

4 :Value of N
rn’ :Value of UPLO
2.07

3.87 -0.21

4.20 1.87 1.15
-1.15 0.63 2.06 -1.81 :End of matrix A

9.3. Program Results
FO8FEF Example Program Results

Diagonal
2.0700 1.4741 -0.6492 -1.6949
Off-diagonal
-5.8258 2.6240 0.9163
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FOSFFF (SORGTR/DORGTR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

FOSFFF (SORGTR/DORGTR) generates the real orthogonal matrix Q, which was determined
by FOSFEF (SSYTRD/DSYTRD) when reducing a symmetric matrix to tridiagonal form.

2. Specification
SUBROUTINE FOSFFF (UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)

ENTRY sorgtr (UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER N, LDA, LWORK, INFO
real A(LDA, *), TAU(*), WORK(LWORK)

CHARACTER*1  UPLO
The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine is intended to be used after a call to FOS8FEF (SSYTRD/DSYTRD), which reduces
a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation: A = QTQ”. FOSFEF represents the orthogonal matrix Q as a product of n—1
elementary reflectors.

This routine may be used to generate Q explicitly as a square matrix.

4. References

[1] GOLUB, G.H. and VAN LOAN, CF.
Matrix Computations, §8.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

5. Parameters

1:  UPLO - CHARACTER*1. Input
Onentry: this must be the same parameter UPLO as supplied to FOSFEF
(SSYTRD/DSYTRD).

Constraint. UPLO = 'U' or 'L'.

2: N - INTEGER. Input
On entry: n, the order of the matrix Q.
Constraint: N 2 0.

3:  A(LDA,*) - real array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOSFEF (SSYTRD/DSYTRD).

On exit: the n by n orthogonal matrix Q.

4:  LDA — INTEGER. Input

On entry:. the first dimension of the array A as declared in the (sub)program from which
FOS8FFF (SORGTR/DORGTR) is called.

Constraint: LDA 2 max(1,N).
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5:

Page 2

TAU(*) — real array. Input
Note: the dimension of the array TAU must be at least max(1,N-1).

Onentry: further details of the elementary reflectors, as returned by FOS8FEF
(SSYTRD/DSYTRD).

WORK (LWORK) - real array. Workspace
Onexit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSFFF (SORGTR/DORGTR) is called.

Suggested value: for optimum performance LWORK should be at least (N—1)Xxnb, where
nb is the blocksize.

Constraint: LWORK 2 max(1,N-1).

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that
lEN, = O(e),

where ¢ is the machine precision.

Further Comments

The total number of floating-point operations is approximately $n°.
The complex analogue of this routine is FOSFTF (CUNGTR/ZUNGTR).

Example
To compute all the eigenvalues and eigenvectors of the matrix A, where

207 387 420 -1.15
387 -021 187 0.63
420 187 115 206)
-1.15 063 2.06 -1.81

Here A is symmetric and must first be reduced to tridiagonal form by FOS8FEF
(SSYTRD/DSYTRD). The program then calls FOSFFF (SORGTR/DORGTR) to form @, and
passes this matrix to FO8JEF (SSTEQR/DSTEQR) which computes the eigenvalues and
eigenvectors of A.

A=

[NP2478116)



FO08 — Least-squares and Eigenvalue Problems (LAPACK) FOSFFF (SORGTR/DORGTR)

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denot ion-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explamed in the Euential Introduction to this
manual, the results produced may not be identical for all implementations.

* FOS8FFF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LWORK, LD2
PARAMETER (NMAX=8, LDA=NMAX, LWORK=64*NMAX, LDZ=NMAX)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, N
CHARACTER UPLO
* .. Local Arrays ..
real A(LDA,NMAX), D(NMAX), E(NMAX), TAU(NMAX),
+ WORK(LWORK), Z(LDZ,NMAX)
* .. External Subroutines ..
EXTERNAL sorgtr, ssteqr, ssytrd, FO6QFF, X04CAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8FFF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read A from data file
READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN
READ (NIN,*) ((A(I,J),J=I,N),I=1,N)
ELSE IF (UPLO.EQ.’L’) THEN
READ (NIN,*) ((A(I,J),J=1,I),I=1,N)
END IF
* Reduce A to tridiagonal form T = (Q**T)*A*Q
CALL ssytrd(UPLO,N,A,LDA, D, E, TAU, WORK, LWORK, INFO)
* Copy A into 2
CALL FO6QFF(UPLO,N,N,A,LDA,Z,LDZ)
* Form Q explicitly, storing the result in 2
CALL Ssorgtr(UPLO, N, Z, LDZ, TAU, WORK, LWORK, INFO)
* Calculate all the eigenvalues and eigenvectors of A
CALL ssteqr('V'’ ,N,D,E,2,LDZ,WORK, INFO)
WRITE (NOUT, *)
IF (INFO.GT.0) THEN

WRITE (NOUT,*) ’‘Failure to converge.’
ELSE

*

Print eigenvalues and eigenvectors
WRITE (NOUT,*) ’'Eigenvalues’

WRITE (NOUT,99999) (D(I),I=1,N)
WRITE (NOUT, *)

IFAIL = 0

CALL XO04CAF('General’,’ ’',N,N,Z,LDZ,’Eigenvectors’, IFAIL)
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END IF
END IF
STOP
*
99999 FORMAT (3X, (8F8.4))
END

9.2. Program Data
FO8BFFF Example Program Data

4 :Value of N

4 :Value of UPLO
2.07

3.87 -0.21

4.20 1.87 1.15
~-1.15 0.63 2.06 -1.81 :End of matrix A

9.3. Program Results
FO8FFF Example Program Results

Eigenvalues
-5.0034 -1.9987 0.2013 8.0008

Eigenvectors

1 2 3 4
1 0.5658 —-0.2328 —-0.3965 0.6845
2 =-0.3478 0.7994 -0.1780 0.4564
3 -0.4740 -0.4087 0.5381 0.5645
4 0.5781 0.3737 0.7221 0.0676
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FOSFGF (SORMTR/DORMTR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold #talicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOS8FGF (SORMTR/DORMTR) multiplies an arbitrary real matrix C by the real orthogonal
matrix Q which was determined by FOSFEF (SSYTRD/DSYTRD) when reducing a real
symmetric matrix to tridiagonal form.

Specification

SUBROUTINE FO8FGF (SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

ENTRY sormtr (SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

INTEGER M, N, LDA, LDC, LWORK, INFO

real A(LDA,*), TAU(*), C(LDC, *), WORK(LWORK)

CHARACTER*1  SIDE, UPLO, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSFEF (SSYTRD/DSYTRD), which reduces
a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation: A = QTQ”. FOSFEF represents the orthogonal matrix Q as a product of
elementary reflectors.

This routine may be used to form one of the matrix products
QC, @7C, CQ or CQT,
overwriting the result on C (which may be any real rectangular matrix).

A common application of this routine is to transform a matrix Z of eigenvectors of T to the matrix
QZ of eigenvectors of A.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
SIDE - CHARACTER*1. Input
On entry: indicates how Q or Q7 is to be applied to C as follows:
if SIDE = 'L, then Q or Q7 is applied to C from the left;
if SIDE = 'R', then Q or Q7 is applied to C from the right.
Constraint: SIDE = L' or R'.

UPLO - CHARACTER*1. Input

Onentry: this must be the same parameter UPLO as supplied to FOSFEF
(SSYTRD/DSYTRD).

Constraint: UPLO = 'U' or L',
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3:

10:

11:

12:

TRANS — CHARACTER*1. Input
On entry: indicates whether Q or Q7 is to be applied to C as follows:
if TRANS = 'N/, then Q is applied to C;
if TRANS = 'T', then Q7 is applied to C.
Constraint: TRANS = 'N' or T

M — INTEGER. Input
On entry: m, the number of rows of the matrix C; m is also the order of Q if SIDE = L.
Constraint: M 2 0.

N — INTEGER. Input
On entry: n, the number of columns of the matrix C; n is also the order of Q if SIDE = 'R'.
Constraint: N 2 0.

A(LDA*) — real array. Input

Note: the second dimension of the array A must be at least max(1,M) if SIDE = L' and at
least max(1,N) if SIDE = R'.

Onentry. details of the vectors which define the elementary reflectors, as returned by
FOSFEF (SSYTRD/DSYTRD).

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FO8FGF (SORMTR/DORMTR) is called.

Constraints: LDA 2 max(1,M) if SIDE = T,
LDA 2 max(1,N) if SIDE = R

TAU (*) — real array. Input

Note: the dimension of the array TAU must be at least max(1,M-1) if SIDE = L' and at
least max(1,N-1) if SIDE = R'.

Onentry: further details of the elementary reflectors, as returned by FOSFEF
(SSYTRD/DSYTRD).

C(LDC,*) — real array. Input/ Output
Note: the second dimension of the array C must be at least max (1,N).
On entry: the m by n matrix C.
On exit: C is overwritten by QC or Q7C or CQT or CQ as specified by SIDE and TRANS.

LDC — INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
FO8FGF (SORMTR/DORMTR) is called.

Constraint: LDC 2 max(1,M).

WORK(LWORK) - real array. Workspace

Onexit. if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FO8FGF (SORMTR/DORMTR) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb if SIDE = 'L’
and at least Mxnb if SIDE = 'R', where nb is the blocksize.
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13:

9.1.

Constraints: LIWORK 2 max(1,N) if SIDE = 'L’,
LWORK 2 max(1,M) if SIDE = R'.

INFO - INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed result differs from the exact result by a matrix E such that
€I, = O(&)ICll,,

where € is the machine precision.

Further Comments

The total number of floating-point operations is approximately 2m?n if SIDE = 'L' and 2mn? if
SIDE = R'

The complex analogue of this routine is FOSFUF (CUNMTR/ZUNMTR).

Example
To compute the two smallest eigenvalues, and the associated eigenvectors, of the matrix A, where

207 387 420 -1.15

3.87 -021 187 0.63

420 187 115 206}
-1.15 0.63 2.06 -1.81

Here A is symmetric and must first be reduced to tridiagonal form T by FOS8FEF
(SSYTRD/DSYTRD). The program then calls FO8JJF (SSTEBZ/DSTEBZ) to compute the
requested eigenvalues and FO8JKF (SSTEIN/DSTEIN) to compute the associated eigenvectors
of T. Finally FOSFGF (SORMTR/DORMTR) is called to transform the eigenvectors to those of
A

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

A=

* FO8FGF Example Program Text
* Mark 16 Release. NAG Copyright 1992,
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LDZ, LWORK
PARAMETER (NMAX=8, LDA=NMAX, LDZ=NMAX, LWORK=64 *NMAX)
real ZERO
PARAMETER (ZERO=0.0e0)
* .. Local Scalars ..
real VL, VU
INTEGER I, IFAIL, INFO, J, M, N, NSPLIT
CHARACTER UPLO
* .. Local Arrays ..
real A(LDA,NMAX), D(NMAX), E(NMAX), TAU(NMAX),
+ W(NMAX), WORK(LWORK), 2Z(LDZ,NMAX)
INTEGER IBLOCK(NMAX), IFAILV(NMAX), ISPLIT(NMAX),
+ IWORK (NMAX)
* .. External Subroutines ..
EXTERNAL sormtr, sstebz, sstein, ssytrd, X0ACAF
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* .. Executable Statements ..
WRITE (NOUT,*) ’‘FO8FGF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read A from data file

READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN

READ (NIN,*) ((A(I,J),J=I,N),I=1,N)
ELSE IF (UPLO.EQ.’L’) THEN

READ (NIN,*) ((A(I,J),J=1,I),I=1,N)
END IF

* Reduce A to tridiagonal form T = (Q**T)*A*Q
CALL ssytrd( UPLO,N,A,LDA, D, E, TAU, WORK, LWORK, INFO)
* Calculate the two smallest eigenvalues of T (same as A)

CALL sstebz('1’,’B’,N,VL,VU,1,2,2ERO,D,E,M,NSPLIT, W, IBLOCK,
+ ISPLIT,WORK, IWORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.O0) THEN

WRITE (NOUT,*) ’"Failure to converge.’
ELSE

WRITE (NOUT,*) ’'Eigenvalues’

WRITE (NOUT,99999) (W(I),I=1,M)

*

Calculate the eigenvectors of T, storing the result in 2

CALL sstein(N,D,E,M,W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAILV,
+ INFO)

IF (INFO.GT.0) THEN
WRITE (NOUT,*) 'Failure to converge.’
ELSE

* Calculate the eigenvectors of A = Q * (eigenvectors of T)

CALL sormtr(’ Left’ ,UPLO,'No transpose’,N,M,A,LDA, TAU,Z,
+ LDZ,WORK, LWORK, INFO)

* Print eigenvectors

WRITE (NOUT, *)
IFAIL = 0

CALL X04CAF(’General’,’ ’',N,M,2%2,LDZ,’'Eigenvectors’,IFAIL)

END IF
END IF
END IF
STOP
*
99999 FORMAT (3X,(9F8.4))
END

9.2. Program Data
FO8FGF Example Program Data

4 :Value of N
'L’ :Value of UPLO
2.07

3.87 -0.21

4.20 1.87 1.15
-1.15 0.63 2.06 -1.81 :End of matrix A
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9.3. Program Results
FO8FGF Example Program Results

Eigenvalues
-5.0034 -1.9987

Eigenvectors

1 2
1 0.5658 —-0.2328
2 -0.3478 0.799%4
3 -0.4740 -0.4087
4 0.5781 0.3737
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FO8FSF (CHETRD/ZHETRD) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold #alicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
FO8FSF (CHETRD/ZHETRD) reduces a complex Hermitian matrix to tridiagonal form.
Specification
SUBROUTINE FO8FSF (UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)
ENTRY chetrd (upLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO)
INTEGER N, LDA, LWORK, INFO
real D(*), E(*)
complex A(LDA, *), TAU(*), WORK(LWORK)

CHARACTER*1  UPLO
The ENTRY statement enables the routine to be called by its LAPACK name.

Description
This routine reduces a complex Hermitian matrix A to real symmetric tridiagonal form T by a
unitary similarity transformation: A = QTQ".

The matrix Q is not formed explicitly but is represented as a product of n—1 elementary reflectors
(see the Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 8).

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §8.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
UPLO — CHARACTER*1. Input
On entry: indicates whether the upper or lower triangular part of A is stored as follows:
if UPLO = 'U', then the upper triangular part of A is stored;
if UPLO = L', then the lower triangular part of A is stored.
Constraint: UPLO = 'U' or L'

N — INTEGER. Input
On entry: n, the order of the matrix A.
Constraint: N 2 0.

A(LDA*) — complex array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the n by n Hermitian matrix A. If UPLO = 'U’, the upper triangle of A must be
stored and the elements of the array below the diagonal are not referenced; if UPLO = L',

the lower triangle of A must be stored and the elements of the array above the diagonal are
not referenced.

On exit: A is overwritten by the tridiagonal matrix T and details of the unitary matrix Q as
specified by UPLO.
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4:

10:

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FO8FSF (CHETRD/ZHETRD) is called.

Constraint: LDA 2 max(1,N).

D(*) — real array. Output
Note: the dimension of the array D must be at least max(1,N).
On exit: the diagonal elements of the tridiagonal matrix T.

E(*) — real array. Output
Note: the dimension of the array E must be at least max(1,N-1).
On exit: the off-diagonal elements of the tridiagonal matrix T.

TAU(*) — complex array. Output
Note: the dimension of the array TAU must be at least max(1,N-1).
On exit: further details of the unitary matrix Q.

WORK(LWORK) — complex array. Workspace

Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FO8FSF (CHETRD/ZHETRD) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb, where nb is
the blocksize.

Constraint: LWORK 2 1.

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix A + E, where
IEl, < c(n)elAl,,

c(n) is a modestly increasing function of n, and € is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors
in the computation, but this does not affect the stability of the eigenvalues and eigenvectors.

Further Comments
3
T.
To form the unitary matrix Q this routine may be followed by a call to FOS8FTF
(CUNGTR/ZUNGTR):
CALL CUNGTR (UPLO,N,A,LDA, TAU, WORK, LWORK, INFO)

The total number of real floating-point operations is approximately
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To apply Q to an n by p complex matrix C this routine may be followed by a call to FOSFUF
(CUNMTR/ZUNMTR). For example,

CALL CUNMTR (’Left’,UPLO,’No Transpose’,N,P,A,LDA,TAU,C,LDC,
+ WORK, LWORK, INFO)

forms the matrix product QC.
The real analogue of this routine is FOSFEF (SSYTRD/DSYTRD).

9. Example
To reduce the matrix A to tridiagonal form, where

-2.28 + 0.00i 1.78 - 2.03; 2.26 + 0.10i —-0.12 + 2.53i
1.78 + 2.03i -1.12 + 0.00i 0.01 + 0.43i -1.07 + 0.86i
226 - 0.10i 0.01 - 0.43i -0.37 + 0.00i 231 - 0.92i |’

-0.12 - 2.53i -1.07 - 0.86i 2.31 + 0.92i -0.73 + 0.00i

A=

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8FSF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LWORK
PARAMETER (NMAX=8, LDA=NMAX, LWORK=64 *NMAX )
* .. Local Scalars ..
INTEGER I, INFO, J, N
CHARACTER UPLO
* .. Local Arrays
complex A(LDA,NMAX), TAU(NMAX-1), WORK(LWORK)
real D(NMAX), E(NMAX-1)
* .. External Subroutines ..
EXTERNAL chetrd
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8FSF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read A from data file

READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN

READ (NIN,*) ((A(I,J),J=I,N),I=1,N)
ELSE IF (UPLO.EQ.’L’) THEN

READ (NIN,*) ((A(I,J),J=1,I),I=1,N)
END IF

*

Reduce A to tridiagonal form

CALL chetrd(UPLO,N,A,LDA,D, E, TAU, NORK, LWORK, INFO)

*

Print tridiagonal form

WRITE (NOUT, %)
WRITE (NOUT,*) ’‘Diagonal’
WRITE (NOUT,99999) (D(I),I=1,N)
WRITE (NOUT,*) ’‘Off-diagonal’
WRITE (NOUT, 99999) (E(I),I=1,N-1)
END IF
STOP
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99999 FORMAT (1X,8F9.4)
END

9.2. Program Data

FO8FSF Example Program Data
4
IL’
(-2.28, 0.00)
( 1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00)

9.3. Program Results
FO8FSF Example Program Results

Diagonal

-2.2800 -0.1285 -0.1666 —1.9249
Off-diagonal

-4.3385 -2.0226 -1.8023

:Value of N
:Value of UPLO

:End of matrix A
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FOSFTF (CUNGTR/ZUNGTR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FOS8FTF (CUNGTR/ZUNGTR) generates the complex unitary matrix Q, which was determined
by FOS8FSF (CHETRD/ZHETRD) when reducing a Hermitian matrix to tridiagonal form.

Specification
SUBROUTINE FO8FTF (UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)
ENTRY cungtr (UPLO, N, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER N, LDA, LWORK, INFO
complex A(LDA, *), TAU(*), WORK(LWORK)

CHARACTER*1  UPLO
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSFSF (CHETRD/ZHETRD ), which reduces
a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity
transformation: A = QTQ". FOSFSF represents the unitary matrix Q as a product of n-1
elementary reflectors.

This routine may be used to generate Q explicitly as a square matrix.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §8.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
UPLO — CHARACTER*1. Input

Onentry: this must be the same parameter UPLO as supplied to FOSFSF
(CHETRD/ZHETRD).

Constraint: UPLO = 'U' or 'L'.

N — INTEGER. Input
On entry: n, the order of the matrix Q.
Constraint: N 2 0.

A(LDA,*) — complex array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOSFSF (CHETRD/ZHETRD).

On exit: the n by n unitary matrix Q.

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOS8FTF (CUNGTR/ZUNGTR) is called.

Constraint: LDA 2 max(1,N).
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5:  TAU(*) — complex array. Input
Note: the dimension of the array TAU must be at least max(1,N-1).

Onentry: further details of the elementary reflectors, as returned by FO8FSF
(CHETRD/ZHETRD).

6: WORK(LWORK) — complex array. Workspace
Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

7:  LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOS8FTF (CUNGTR/ZUNGTR) is called.

Suggested value: for optimum performance LWORK should be at least (N-1)xnb, where
nb is the blocksize.

Constraint: LWORK 2 max(1,N-1).

8: INFO - INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

7. Accuracy
The computed matrix Q differs from an exactly unitary matrix by a matrix E such that
IEN, = O(e),

where ¢ is the machine precision.

8. Further Comments

3

The total number of real floating-point operations is approximately 163" .

The real analogue of this routine is FOSFFF (SORGTR/DORGTR).

9. Example
To compute all the eigenvalues and eigenvectors of the matrix A, where

-2.28 + 0.00i 1.78 - 2.03i 2.26 + 0.10i —-0.12 + 2.53i
1.78 + 2.03i -1.12 + 0.00i 0.01 + 0.43i -1.07 + 0.86i
226 - 0.10i 0.01 - 043i -0.37 + 0.00i 2.31 - 0.92i [

-0.12 - 2.53i -1.07 - 0.86i 2.31 + 0.92i -0.73 + 0.00i

Here A is Hermitian and must first be reduced to tridiagonal form by FO8FSF
(CHETRD/ZHETRD). The program then calls FOSFTF (CUNGTR/ZUNGTR) to form Q, and
passes this matrix to FO8JSF (CSTEQR/ZSTEQR) which computes the eigenvalues and
eigenvectors of A.

A=
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8FTF Example Program Text
* Mark 16 Release. NAG Copyright 1992,
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LWORK, LDZ
PARAMETER (NMAX=8, LDA=NMAX, LWORK=64 *NMAX, LD Z=NMAX )
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, N
CHARACTER UPLO
* .. Local Arrays ..
complex A(LDA,NMAX), TAU(NMAX), WORK(LWORK), Z(LDZ, NMAX)
real D(NMAX), E(NMAX), RWORK(2*NMAX-2)
CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines ..
EXTERNAL FO6TFF, X04DBF, chetrd, csteqr, cungtr
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8FTF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read A from data file
READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN
READ (NIN,*) ((A(I,J),J=I,N),I=1,6N)
ELSE IF (UPLO.EQ.’L’) THEN
READ (NIN,*) ((A(I,J),J=1,I),I=1,N)
END IF
* Reduce A to tridiagonal form T = (Q**xH)*A*Q
CALL chetrd(UPLO,N,A,LDA, D, E, TAU, WORK, LWORK, INFO)
* Copy A into 2
CALL FO6TFF(UPLO,N,N,A,LDA,Z,LDZ)
* Form Q explicitly, storing the result in 2
CALL cungtr(UPLO,N, 2, LDZ, TAU, WORK, LWORK, INFO)
* Calculate all the eigenvalues and eigenvectors of A
CALL csteqr(’V’,N,D,E, Z,LDZ, RWORK, INFO)
WRITE (NOUT, *)
IF (INFO.GT.0) THEN

WRITE (NOUT,*) ’‘Failure to converge.’
ELSE

*

Print eigenvalues and eigenvectors

WRITE (NOUT,*) ’'Eigenvalues’
WRITE (NOUT, 99999) (D(I),I=1,N)
WRITE (NOUT, *)

IFAIL = 0
*
CALL X04DBF(’General’,’ ’,N,N,Z%,LDZ, Bracketed’,’F7.4’,
+ 'Eigenvectors’,’Integer’,RLABS, ' Integer’, CLABS,
+ 80,0, IFAIL)
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END IF
END IF
STOP
*
99999 FORMAT (8X,4(F7.4,11X,:))
END

9.2. Program Data

FOS8FTF Example Program Data
4 :Value of N
i N4 :Value of UPLO
(-2.28, 0.00)
( 1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A

9.3. Program Results
FOS8FTF Example Program Results

Eigenvalues
-6.0002 -3.0030 0.5036 3.9996

Eigenvectors
3 4

1 2
( 0.7299, 0.0000) .2120, 0.1497)

1 (-0 ( 0.1000,-0.3570) ( 0.1991, 0.4720)
2 (-0.1663,-0.2061) ( 0.7307, 0.0000) ( 0.2863,-0.3353) (-0.2467, 0.3751)
3 (-0.4165,-0.1417) (-0.3291, 0.0479) ( 0.6890, 0.0000) ( 0.4468, 0.1466)
4 ( 0.1743, 0.4162) ( 0.5200, 0.1329) ( 0.0662, 0.4347) ( 0.5612, 0.0000)

Page 4 (last) [NP2478/16]



FO08 — Least Squares and Eigenvalue Problems (LAPACK) FOSFUF (CUNMTR/ZUNMTR)

FO8FUF (CUNMTR/ZUNMTR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FO8FUF (CUNMTR/ZUNMTR) multiplies an arbitrary complex matrix C by the complex
unitary matrix Q which was determined by FOSFSF (CHETRD/ZHETRD) when reducing a
complex Hermitian matrix to tridiagonal form.

Specification

SUBROUTINE FO8FUF (SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

ENTRY cunmir (SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

INTEGER M, N, LDA, LDC, LWORK, INFO

complex A(LDA, *), TAU(*), C(LDC, *), WORK(LWORK)

CHARACTER*1  SIDE, UPLO, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSFSF (CHETRD/ZHETRD), which reduces
a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity
transformation: A = QTQ". FOSFSF represents the unitary matrix Q as a product of elementary
reflectors.

This routine may be used to form one of the matrix products
Qc, ¢, cQ or CQY,
overwriting the result on C (which may be any complex rectangular matrix).

A common application of this routine is to transform a matrix Z of eigenvectors of T to the matrix
QZ of eigenvectors of A.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
SIDE - CHARACTER*1. Input
On entry: indicates how Q or Q¥ is to be applied to C as follows:
if SIDE = 'L, then Q or Q¥ is applied to C from the left;
if SIDE = 'R, then Q or Q is applied to C from the right.
Constraint: SIDE = L' or R'.

UPLO — CHARACTER*1. Input

Onentry. this must be the same parameter UPLO as supplied to FOSFSF
(CHETRD/ZHETRD).

Constraint: UPLO = 'U' or L'
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TRANS — CHARACTER*1. Input
On entry: indicates whether Q or Q¥ is to be applied to C as follows:
if TRANS = 'N', then Q is applied to C;
if TRANS = 'C', then Q¥ is applied to C.
Constraint: TRANS = 'N' or 'C'.

M - INTEGER. Input
On entry: m, the number of rows of the matrix C; m is also the order of Q if SIDE = L'
Constraint: M 2 0.

N - INTEGER. Input
On enﬁ’y: n, the number of columns of the matrix C; n is also the order of Q if SIDE = R".
Constraint: N 2 0.

A(LDA,*) — complex array. Input

Note: the second dimension of the array A must be at least max(1,M) if SIDE = L' and at
least max(1,N) if SIDE = R'

Onentry: details of the vectors which define the elementary reflectors, as returned by
FO8FSF (CHETRD/ZHETRD).

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOS8FUF (CUNMTR/ZUNMTR) is called.

Constraints: LDA 2 max(1,M) if SIDE = 'L/,
LDA 2 max(1,N) if SIDE = R'.
TAU(*) — complex array. Input

Note: the dimension of the array TAU must be at least max(1,M~-1) if SIDE = L' and at
least max(1,N-1) if SIDE = R’

Onentry. further details of the elementary reflectors, as returned by FO8FSF
(CHETRD/ZHETRD).

C(LDC,*) — complex array. Input/ Output
Note: the second dimension of the array C must be at least max(1,N).
On entry: the m by n matrix C.
On exit: C is overwritten by QC or Q¥C or CQ¥ or CQ as specified by SIDE and TRANS.

LDC - INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
FO8FUF (CUNMTR/ZUNMTR) is called.

Constraint: LDC 2 max(1,M).

WORK (LWORK) — complex array. Workspace
Onexit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for

optimum performance.
LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FO8FUF (CUNMTR/ZUNMTR) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb if SIDE = 'L
and at least Mxnb if SIDE = 'R', where nb is the blocksize.
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Constraints: LWORK 2 max(1,N) if SIDE = L',
LWORK 2 max(1,M) if SIDE = R".

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed result differs from the exact result by a matrix E such that
EN, = O(&)ICl,,

where € is the machine precision.

Further Comments

The total number of real floating-point operations is approximately 8m?n if SIDE = 'L' and
8mn? if SIDE = 'R..
The real analogue of this routine is FOSFGF (SORMTR/DORMTR).

Example
To compute the two smallest eigenvalues, and the associated eigenvectors, of the matrix A, where

-2.28 + 0.00i 178 - 2.03i 2.26 + 0.10i -0.12 + 2.53;
1.78 + 2.03i -1.12 + 0.00i 0.01 + 0.43i —1.07 + 0.86i
226 - 0.10i 0.01 - 043i 037 + 0.00i 2.31 — 0.92i]

-0.12 - 2.53i -1.07 - 0.86i 2.31 + 0.92i -0.73 + 0.00i

Here A is Hermitian and must first be reduced to tridiagonal form T by FOSFSF
(CHETRD/ZHETRD). The program then calls FOSJJF (SSTEBZ/DSTEBZ) to compute the
requested eigenvalues and FOSJXF (CSTEIN/ZSTEIN) to compute the associated eigenvectors
of T. Finally FOSFUF (CUNMTR/ZUNMTR) is called to transform the eigenvectors to those of
A,

A=

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8FUF Example Program Text
* Mark 16 Release. NAG Copyright 1992,
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LDZ, LWORK
PARAMETER (NMAX=8,LDA=NMAX,LDZ-NMAX,LWORK-64*NMAX)
real ZERO
PARAMETER (ZERO=0.0e€0)
* .. Local Scalars ..
real VL, VU
INTEGER I, IFAIL, INFO, J, M, N, NSPLIT
CHARACTER UPLO
* .. Local Arrays ..
complex A(LDA,NMAX), TAU(NMAX), WORK(LWORK), 2(LDZ, NMAX)
real D(NMAX), E(NMAX), RWORK(5*NMAX), W(NMAX)
INTEGER IBLOCK(NMAX), IFAILV(NMAX), ISPLIT(NMAX),
+ IWORK (NMAX)
CHARACTER CLABS(1), RLABS(1)
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* .. External Subroutines ..

EXTERNAL sstebz, X04DBF, chetrd, cstein, cunmir
* .. Executable Statements ..

WRITE (NOUT,*) 'FO8FUF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

* Read A from data file

READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN

READ (NIN,*) ((A(I,J),J=I,N),I=1,N)
ELSE IF (UPLO.EQ.’L’) THEN

READ (NIN,*) ((A(I,J),J=1,I),I=1,N)
END IF

* Reduce A to tridiagonal form T = (Q**H)*A*xQ
CALL chetrd(UPLO,N, A, LDA, D, E, TAU, WORK, LWORK, INFO)
* Calculate the two smallest eigenvalues of T (same as A)

CALL sstebz(’1’,’B’,N,VL,VU,1,2,ZERO,D, E,M, NSPLIT,W, IBLOCK,
+ ISPLIT, RWORK, IWORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.0) THEN

WRITE (NOUT,*) ’Failure to converge.’
ELSE

WRITE (NOUT,*) ’‘Eigenvalues’

WRITE (NOUT,99999) (W(I),I=1,M)

*

Calculate the eigenvectors of T, storing the result in 2

CALL cstein(N,D,E,M, W, IBLOCK, ISPLIT, Z, LDZ, RWHORK, IWORK,
+ IFAILV, INFO)

IF (INFO.GT.0) THEN
WRITE (NOUT,*) ’‘Failure to converge.’
ELSE
* Calculate the eigenvectors of A = Q * (eigenvectors of T)

CALL cunmtr(’Left’,UPLO,’No transpose’,N,M,A,LDA,TAU,Z,
+ 1DZ, WORK, LWORK, INFO)

* Print eigenvectors

WRITE (NOUT, *)

IFAIL = 0
*
CALL X04DBF('’General’,’ r ,N,M,Z,LDZ,"Bracketed’,’'F7.4',
+ 'Eigenvectors’,’ Integer’,RLABS, ' Integer’,
+ CLABS, 80,0, IFAIL)
*
END IF
END IF
END IF
STOP

*

99999 FORMAT (8X,4(F7.4,11X%,:))
END
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9.2. Program Data

FO8FUF Example Program Data
4 tValue of N
'L’ :Value of UPLO
(-2.28, 0.00)
(1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) tEnd of matrix A

9.3. Program Results
FO8FUF Example Program Results

Eigenvalues
-6.0002 -3.0030

Eigenvectors

1 2
( 0.7299, 0.0000) (-0.2595, 0.0000)
(-0.1663,-0.2061) ( 0.5969, 0.4214)
(-0.4165,-0.1417) (-0.2965,-0.1507)
( 0.1743, 0.4162) ( 0.3482, 0.4085)

o wh Rk
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FO8GEF (SSPTRD/DSPTRD) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FO8GEF (SSPTRD/DSPTRD) reduces a real symmetric matrix to tridiagonal form, using
packed storage.

Specification
SUBROUTINE FOS8GEF (UPLO, N, AP, D, E, TAU, INFO)
ENTRY ssptrd (UPLO, N, AP, D, E, TAU, INFO)
INTEGER N, INFO
real AP(*), D(*), E(*), TAU(*)

CHARACTER*1  UPLO
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine reduces a real symmetric matrix A, held in packed storage, to symmetric tridiagonal
form T by an orthogonal similarity transformation: A = QTQT.

The matrix Q is not formed explicitly but is represented as a product of n—1 elementary reflectors
(see the Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 8).

References

(1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §8.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
UPLO — CHARACTER*1. Input
On entry: indicates whether the upper or lower triangular part of A is stored as follows:
if UPLO = 'U', then the upper triangular part of A is stored;
if UPLO = 'L', then the lower triangular part of A is stored.
Constraint: UPLO = 'U’' or L'

N — INTEGER. Input
On entry: n, the order of the matrix A.
Constraint: N 2 0.

AP(*) — real array. Input/ Output
Note: the dimension of the array AP must be at least max(1,N*(N+1)/2).
Onentry: the n by n symmetric matrix A, packed by columns. More precisely, if
UPLO = 'U', the upper triangle of A must be stored with element a, in AP( i4j(j~1)/2) for

ij
i s j; if UPLO = L', the lower triangle of A must be stored with element a; in

AP(i+(2n—j) (j-1)/2) for i 2 j.
On exit: A is overwritten by the tridiagonal matrix T and details of the orthogonal matrix Q.

D(*) — real array. Output
Note: the dimension of the array D must be at least max(1,N).
On exit: the diagonal elements of the tridiagonal matrix T,
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E(*) — real array. Output
Note: the dimension of the array E must be at least max(1,N-1).
On exit: the off-diagonal elements of the tridiagonal matrix T.

TAU(*) — real array. Output
Note: the dimension of the array TAU must be at least max(1,N-1).
On exit: further details of the orthogonal matrix Q.

INFO — INTEGER. Output
On exit;: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix A + E, where
lENl, s c(n)elAll,,

c(n) is a modestly increasing function of n, and € is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors
in the computation, but this does not affect the stability of the eigenvalues and eigenvectors.

Further Comments
The total number of floating-point operations is approximately in>.

To form the orthogonal matrix Q this routine may be followed by a call to FO8GFF
(SOPGTR/DOPGTR):

CALL SOPGTR (UPLO, N, AP, TAU,Q, LDQ, WORK, INFO)

To apply Q to an n by p real matrix C this routine may be followed by a call to FOSGGF
(SOPMTR/DOPMTR). For example,

CALL SOPMTR (’Left’,UPLO,’No Transpose’,N,P,AP,TAU,C,LDC,WORK,
+ INFO)

forms the matrix product QC.
The complex analogue of this routine is FOBGSF (CHPTRD/ZHPTRD).

Example
To reduce the matrix A to tridiagonal form, where

207 3.87 420 -1.15
3.87 -0.21 1.87 0.63
420 187 115 206/
-1.15 063 2.06 -1.81

using packed storage.

A=
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denot precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8GEF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=8 )
* .. Local Scalars ..
INTEGER I, INFO, J, N
CHARACTER UPLO
* .. Local Arrays ..
real AP (NMAX* (NMAX+1)/2), D(NMAX), E (NMAX-1),
+ TAU(NMAX-1)
* .. External Subroutines ..
EXTERNAL ssptrd
* .. Executable Statements ..
WRITE (NOUT,*) ’FO8GEF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read A from data file

READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN
READ (NIN, *) ((AP(I+Jx(J-1)/2),J=I,N),I=1,N)
ELSE IF (UPLO.EQ.’L’) THEN
READ (NIN,*) ((AP(I+(2*N-J)x(J-1)/2),Jd=1,I),I=1,N)
END IF

*

Reduce A to tridiagonal form

CALL ssptrd(UPLO,N, AP, D, E, TAU, INFO)

*

Print tridiagonal form

WRITE (NOUT, *)
WRITE (NOUT,*) ’‘Diagonal’
WRITE (NOUT,99999) (D(I),I=1,N)
WRITE (NOUT,*) ’Off-diagonal’
WRITE (NOUT,99999) (E(I),I=1,N-1)
END IF
STOP
*
99999 FORMAT (1X,8F9.4)
END

9.2. Program Data
FO8GEF Example Program Data

4 :Value of N
'L’ :Value of UPLO
2.07

3.87 -0.21

4.20 1.87 1.15
-1.15 0.63 2.06 -1.81 :End of matrix A
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9.3. Program Results
FO8GEF Example Program Results

Diagonal

2.0700 1.4741 -0.6492 -1.6949
Off-diagonal

-5.8258 2.6240 0.9163
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FO8GFF (SOPGTR/DOPGTR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FO8GFF (SOPGTR/DOPGTR) generates the real orthogonal matrix Q, which was determined
by FO8GEF (SSPTRD/DSPTRD) when reducing a symmetric matrix to tridiagonal form.

Specification
SUBROUTINE F08GFF (UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)
ENTRY sopgtr (UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)
INTEGER N, LDQ, INFO
real AP(*), TAU(*), Q(LDQ, *), WORK(*)

CHARACTER*1  UPLO
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSGEF (SSPTRD/DSPTRD), which reduces
a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation: A = QTQ”. FOSGEF represents the orthogonal matrix Q as a product of n—1
elementary reflectors.

This routine may be used to generate Q explicitly as a square matrix.

References

(11 GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §8.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
UPLO — CHARACTER*1. Input

Onentry: this must be the same parameter UPLO as supplied to FO8GEF
(SSPTRD/DSPTRD).

Constraint: UPLO = 'U' or L.

N - INTEGER. Input
On entry: n, the order of the matrix Q.
Constraint: N 2 0.

AP(*) - real array. Input
Note: the dimension of the array AP must be at least max(1,N*(N+1)/2).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FO8GEF (SSPTRD/DSPTRD).

TAU(*) - real array. Input
Note: the dimension of the array TAU must be at least max (1,N-1).

Onentry: further details of the elementary reflectors, as returned by FOSGEF
(SSPTRD/DSPTRD).
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Q(LDQ,*) — real array. Output
Note: the second dimension of the array Q must be at least max(1,N).
On exit: the n by n orthogonal matrix Q.

LDQ - INTEGER. Input

On entry: the first dimension of the array Q as declared in the (sub)program from which
FO8GFF (SOPGTR/DOPGTR) is called.

Constraint: LDQ 2 max(1,N).

WORK (*) — real array. Workspace
Note: the dimension of the array WORK must be at least max(1,N-1).

INFO — INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that
lEll, = O(é€),

where € is the machine precision.

Further Comments

The total number of floating-point operations is approximately in’.
The complex analogue of this routine is FOBGTF (CUPGTR/ZUPGTR).

Example

To compute all the eigenvalues and eigenvectors of the matrix A, where

2.07 3.87 420 -1.15
3.87 -021 1.87 0.63
420 187 115 206/
-1.15 0.63 2.06 -1.81

using packed storage. Here A is symmetric and must first be reduced to tridiagonal form by
FOSGEF (SSPTRD/DSPTRD). The program then calls FOBGFF (SOPGTR/DOPGTR) to form
Q, and passes this matrix to FO3JEF (SSTEQR/DSTEQR) which computes the eigenvalues and
eigenvectors of A.

A=

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8GFF Example Program Text

* Mark 16 Release. NAG Copyright 1992.

* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDZ
PARAMETER (NMAX=8, LDZ=NMAX)
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* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, N
CHARACTER UPLO
* .. Local Arrays ..
real AP (NMAX* (NMAX+1)/2), D(NMAX), E(NMAX), TAU(NMAX),
+ WORK(2*NMAX-2), Z(LDZ,NMAX)
* .. BExternal Subroutines ..
EXTERNAL sopgtr, ssptrd, ssteqr, X04CAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8GFF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read A from data file
READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN
READ (NIN,*) ((AP(I+J*(J-1)/2),J=I,N),I=1,6N)
ELSE IF (UPLO.EQ.’L’) THEN
READ (NIN,*) ((AP(I+(2*%N-J)*(J-1)/2),J=1,1I),I=1,N)
END IF
* Reduce A to tridiagonal form T = (Q**T)*xA*Q
CALL ssptrd(UPLO, N, AP,D,E, TAU, INFO)
* Form Q explicitly, storing the result in 2
CALL sopgtr(UPLO, N, AP, TAU, Z, LDZ, WORK, INFO)
* Calculate all the eigenvalues and eigenvectors of A
CALL ssteqr(’V’ ,N,D,E,Z,LDZ,WORK, INFO)
WRITE (NOUT, *)
IF (INFO.GT.0) THEN

WRITE (NOUT,*) ’Failure to converge.’
ELSE

*

Print eigenvalues and eigenvectors

WRITE (NOUT,*) ’'Eigenvalues’
WRITE (NOUT, 99999) (D(I),I=1,N)
WRITE (NOUT, *)

IFAIL = 0

CALL XO04CAF(’General’,’ ’,N,N,Z,LDZ,’Eigenvectors’,IFAIL)

END IF
END IF
STOP
*
99999 FORMAT (3X, (8F8.4))
END

9.2. Program Data
FO8GFF Example Program Data

4 :Value of N
'L’ :Value of UPLO
2.07

3.87 -0.21

4.20 1.87 1.15
-1.15 0.63 2.06 -1.81 :End of matrix A
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9.3. Program Results
FO8GFF Example Program Results

Eigenvalues
-5.0034 -1.9987 0.2013

Eigenvectors
1 2 3
1 0.5658 —-0.2328 -0.3965
2 -0.3478 0.7994 -0.1780
3 -0.4740 -0.4087 0.5381
4 0.5781 0.3737 0.7221

FO08 — Least-squares and Eigenvalue Problems (LAPACK)

8.0008

4
0.6845
0.4564
0.5645
0.0676

Page 4 (last)
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FO8GGF (SOPMTR/DOPMTR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FO8GGF (SOPMTR/DOPMTR) multiplies an arbitrary real matrix C by the real orthogonal
matrix Q which was determined by FO8GEF (SSPTRD/DSPTRD) when reducing a real
symmetric matrix to tridiagonal form.

Specification
SUBROUTINE FO08GGF (SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK, INFO)
ENTRY sopmir (SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK, INFO)
INTEGER M, N, LDC, INFO
real AP(*), TAU(*), C(LDC,*), WORK(*)

CHARACTER*1  SIDE, UPLO, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSGEF (SSPTRD/DSPTRD), which reduces
a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity
transformation: A = QTQ”. FOS8GEF represents the orthogonal matrix Q as a product of
elementary reflectors.

This routine may be used to form one of the matrix products
QC,Q7C, CQ or CQ",
overwriting the result on C (which may be any real rectangular matrix).

A common application of this routine is to transform a matrix Z of eigenvectors of T to the matrix
QZ of eigenvectors of A.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
SIDE — CHARACTER*1. Input
On entry: indicates how Q or Q7 is to be applied to C as follows:
if SIDE = 'L, then Q or Q7 is applied to C from the left;
if SIDE = 'R', then Q or Q” is applied to C from the right.
Constraint: SIDE = L' or R'.

UPLO — CHARACTER*1. Input

Onentry: this must be the same parameter UPLO as supplied to FO8GEF
(SSPTRD/DSPTRD).

Constraint: UPLO = 'U' or L.
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TRANS — CHARACTER*1. Input
On entry: indicates whether Q or Q7 is to be applied to C as follows:
if TRANS = 'N', then Q is applied to C;
if TRANS = 'T', then Q7 is applied to C.
Constraint: TRANS = N' or T

M - INTEGER. Input
On entry: m, the number of rows of the matrix C; m is also the order of Q if SIDE = L'
Constraint: M 2 0.

N - INTEGER. Input
On entry. n, the number of columns of the matrix C; n is also the order of Q if SIDE = R’
Constraint: N 2 0.

AP(*) — real array. Input

Note: the dimension of the array AP must be at least max (1,M*(M+1)/2) if SIDE = L'
and at least max(1,N*(N+1)/2) if SIDE = R'.

Onentry: details of the vectors which define the elementary reflectors, as returned by
FO8GEF (SSPTRD/DSPTRD).

TAU (*) — real array. Input

Note: the dimension of the array TAU must be at least max(1,M-1) if SIDE = L' and at
least max(1,N-1) if SIDE = R'.

Onentry: further details of the elementary reflectors, as returned by FO8GEF
(SSPTRD/DSPTRD).

C(LDC,*) — real array. Input/ Output
Note: the second dimension of the array C must be at least max(1,N).
On entry: the m by n matrix C.
On exit: C is overwritten by QC or QTC or CQ” or CQ as specified by SIDE and TRANS.

LDC — INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
FO8GGF (SOPMTR/DOPMTR) is called.

Constraint: LDC 2 max(1,M).

WORK(*) — real array. Workspace

Note: the dimension of the array WORK must be at least max(1,N) if SIDE = L' and at
least max(1,M) if SIDE = R'.

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

[NP2478/16)



F08 — Least-squares and Eigenvalue Problems (LAPACK) FOS8GGF (SOPMTR/DOPMTR)

7.

9.1.

Accuracy
The computed result differs from the exact result by a matrix E such that
IEI, = O(&)ICI,,

where € is the machine precision.

Further Comments

The total number of floating-point operations is approximately 2m*n if SIDE = 'L' and 2mn? if
SIDE = R'

The complex analogue of this routine is FOSGUF (CUPMTR/ZUPMTR).

Example
To compute the two smallest eigenvalues, and the associated eigenvectors, of the matrix A, where

207 3.87 420 -1.15

3.87 -0.21 187 0.63

420 187 115 206}

-1.15 063 2.06 -1.81

using packed storage. Here A is symmetric and must first be reduced to tridiagonal form T by
FO8GEF (SSPTRD/DSPTRD). The program then calls FO8JJF (SSTEBZ/DSTEBZ) to
compute the requested eigenvalues and FO8JKF (SSTEIN/DSTEIN) to compute the associated
eigenvectors of T. Finally FO8GGF (SOPMTR/DOPMTR) is called to transform the
eigenvectors to those of A.

A=

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8GGF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LD2
PARAMETER (NMAX=8, LDZ=NMAX)
real ZERO
PARAMETER (ZERO=0.0e0)
* .. Local Scalars ..
real VL, VU
INTEGER I, IFAIL, INFO, J, M, N, NSPLIT
CHARACTER UPLO
* .. Local Arrays ..
real AP (NMAX* (NMAX+1)/2), D(NMAX), E(NMAX), TAU(NMAX),
+ W(NMAX), WORK(5*NMAX), Z(LDZ,NMAX)
INTEGER IBLOCK(NMAX), IFAILV(NMAX), ISPLIT(NMAX),
+ IWORK (NMAX)
* .. External Subroutines ..
EXTERNAL sopmtr, ssptrd, sstebz, sstein, X04CAF
* .. Executable Statements ..
WRITE (NOUT,*) ’‘FO08GGF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read A from data file

READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN
READ (NIN,*) ((AP(I+J*(J-1)/2),J=I,N),I=1,N)
ELSE IF (UPLO.EQ.’L’) THEN
READ (NIN,*) ((AP(I+(2*N-J)*(J-1)/2),Jd=1,I),I=1,N)
END IF
*
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* Reduce A to tridiagonal form T = (Q**T)*AxQ
CALL ssptrd(UPLO, N, AP, D, E, TAU, INFO)
* Calculate the two smallest eigenvalues of T (same as A)

CALL sstebz(’'1’,’'B’,N,VL,VU,1,2,2ERO,D,E,M,NSPLIT,W, IBLOCK,
+ ISPLIT, WORK, IWORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.0) THEN

WRITE (NOUT,*) ’'Failure to converge.’
ELSE

WRITE (NOUT,*) ’Eigenvalues’

WRITE (NOUT,99999) (W(I),I=1,M)

*

Calculate the eigenvectors of T, storing the result in 2

CALL sstein(N,D,E,M,W, IBLOCK, ISPLIT, Z,LDZ, WORK, IWORK, IFAILV,
+ INFO)

IF (INFO.GT.0) THEN
WRITE (NOUT,*) ’Fajilure to converge.’
ELSE

* Calculate the eigenvectors of A = Q * (eigenvectors of T)

CALL sopmtr(’Left’ ,UPLO,’No transpose’,N,M,AP,TAU,Z,LDZ,
+ WORK, INFO)

* Print eigenvectors

WRITE (NOUT, *)
IFAIL = 0

CALL XO04CAF('’General’,’ ’,N,M,Z,LDZ,'Eigenvectors’, IFAIL)

END IF
END IF
END IF
STOP
*
99999 FORMAT (3X, (9F8.4))
END

Program Data
FO08GGF Example Program Data

4 :Value of N
'L’ :Value of UPLO
2.07

3.87 -=0.21

4.20 1.87 1.15
-1.15 0.63 2.06 -1.81 :End of matrix A

Program Results
FO8GGF Example Program Results

Eigenvalues
-5.0034 -1.9987

Eigenvectors

1 2
1 0.5658 -0.2328
2 -0.3478 0.799%4
3 -0.4740 -0.4087
4 0.5781 0.3737
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FO08GSF (CHPTRD/ZHPTRD) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FO8GSF (CHPTRD/ZHPTRD) reduces a complex Hermitian matrix to tridiagonal form, using
packed storage.

Specification
SUBROUTINE FO08GSF (UPLO, N, AP, D, E, TAU, INFO)
ENTRY chptrd (uPLO, N, AP, D, E, TAU, INFO)
INTEGER N, INFO
real D(*), E(x*)
complex AP(*), TAU(*)

CHARACTER*1  UPLO
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine reduces a complex Hermitian matrix A, held in packed storage, to real symmetric
tridiagonal form T by a unitary similarity transformation: A = QTQ".

The matrix Q is not formed explicitly but is represented as a product of n—-1 elementary reflectors
(see the Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section §).

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §8.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
UPLO — CHARACTER*1. Input
On entry: indicates whether the upper or lower triangular part of A is stored as follows:
if UPLO = 'U', then the upper triangular part of A is stored;
if UPLO = 'L', then the lower triangular part of A is stored.
Constraint: UPLO = 'U' or L

N — INTEGER. Input
On entry: n, the order of the matrix A.
Constraint: N 2 0.

AP(*) — complex array. Input/ Output
Note: the dimension of the array AP must be at least max(1,N*(N+1)/2).

Onentry. the n by n Hermitian matrix A, packed by columns. More precisely, if
UPLO = 'U, the upper triangle of A must be stored with element a; in AP(i+j(j-1)/2) for
i <j, if UPLO = L', the lower triangle of A must be stored with element a; in
AP(i+(2n—j) (j-1)/2) for i 2 j.

Onexit: A is overwritten by the tridiagonal matrix T and details of the unitary matrix Q.
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D(*) — real array. Output
Note: the dimension of the array D must be at least max(1,N).
On exit: the diagonal elements of the tridiagonal matrix T.

E(*) — real array. Output
Note: the dimension of the array E must be at least max(1,N-1).
On exit: the off-diagonal elements of the tridiagonal matrix T.

TAU(*) — complex array. Output
Note: the dimension of the array TAU must be at least max(1,N-1).
On exit: further details of the unitary matrix Q.

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix A + E, where
IEN, s c(n)elAll,,

c(n) is a modestly increasing function of n, and ¢ is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors
in the computation, but this does not affect the stability of the eigenvalues and eigenvectors.

Further Comments
16n®
3

To form the unitary matrix Q this routine may be followed by a call to FOS8GTF
(CUPGTR/ZUPGTR):

CALL CUPGTR (UPLO, N, AP, TAU,Q, LDQ, WORK, INFO)

To apply Q to an n by p complex matrix C this routine may be followed by a call to FOSGUF
(CUPMTR/ZUPMTR). For example,

CALL CUPMTR (’Left’,UPLO,’No Transpose’,N,P,AP,TAU,C,LDC,WORK,
+ INFO)

forms the matrix product QC.
The real analogue of this routine is FOSGEF (SSPTRD/DSPTRD).

The total number of real floating-point operations is approximately

Example
To reduce the matrix A to tridiagonal form, where
-2.28 + 0.00i 1.78 — 2.03i 2.26 + 0.10i -0.12 + 2.53i
1.78 + 2.03i -1.12 + 0.00i 0.01 + 0.43i -1.07 + 0.86i
226 - 0.10; 0.01 — 043; -0.37 + 0.00i 231 — 0.92i}’
-0.12 - 2.53i -1.07 - 0.86i 2.31 + 0.92i -0.73 + 0.00i

using packed storage.

A=
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO08GSF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=8 )
* .. Local Scalars ..
INTEGER I, INFO, J, N
CHARACTER UPLO
* .. Local Arrays ..
complex AP (NMAX* (NMAX+1)/2), TAU(NMAX-1)
real D(NMAX), E(NMAX-1)
* .. External Subroutines
EXTERNAL chptrd
* .. Executable Statements ..
WRITE (NOUT,*) ’'F08GSF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read A from data file

READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN
READ (NIN,*) ((AP(I+J*(J-1)/2),J=I,N),I=1,N)
ELSE IF (UPLO.EQ.’L’) THEN
READ (NIN,*) ((AP(I+(2*N-J)*(J-1)/2),J=1,1),I=1,N)
END IF

*

Reduce A to tridiagonal form

CALL chptrd(UPLO,N,AP,D,E, TAU, INFO)

*

Print tridiagonal form

WRITE (NOUT, *)
WRITE (NOUT,*) ’'Diagonal’
WRITE (NOUT, 99999) (D(I),I=1,N)
WRITE (NOUT,*) ‘Off-diagonal’
WRITE (NOUT,99999) (E(I),I=1,N-1)
END IF
STOP
*
99999 FORMAT (1X,8F9.4)
END

9.2, Program Data

FO8GSF Example Program Data
4 :Value of N
'n’ :Value of UPLO
(-2.28, 0.00)
( 1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A
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9.3. Program Results
FO8GSF Example Program Results

Diagonal

-2.2800 -0.1285 -0.1666 -1.9249
Off-diagonal

-4.3385 -2.0226 -1.8023
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FOS8GTF (CUPGTR/ZUPGTR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FO8GTF (CUPGTR/ZUPGTR) generates the complex unitary matrix Q, which was determined
by FO8GSF (CHPTRD/ZHPTRD) when reducing a Hermitian matrix to tridiagonal form.

Specification
SUBROUTINE FO8GTF (UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)
ENTRY cupgtr (UPLO, N, AP, TAU, Q, LDQ, WORK, INFO)
INTEGER N, LDQ, INFO
complex AP(*), TAU(*), Q(LDQ, *), WORK(*)

CHARACTER*1  UPLO
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSGSF (CHPTRD/ZHPTRD), which reduces
a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity
transformation: A = QTQ". FO8GSF represents the unitary matrix Q as a product of n-1
elementary reflectors.

This routine may be used to generate Q explicitly as a square matrix.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §8.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters

UPLO — CHARACTER*1. Input
Onentry: this must be the same parameter UPLO as supplied to FO8GSF
(CHPTRD/ZHPTRD).

Constraint: UPLO = 'U' or L.

N — INTEGER. Input
On entry: n, the order of the matrix Q.
Constraint: N 2 0.

AP(*) — complex array. Input
Note: the dimension of the array AP must be at least max(1,N*(N+1)/2).

On entry: details of the vectors which define the elementary reflectors, as returned by
FO8GSF (CHPTRD/ZHPTRD).

TAU(*) — complex array. Input
Note: the dimension of the array TAU must be at least max(1,N-1).

Onentry: further details of the elementary reflectors, as returned by FO8GSF
(CHPTRD/ZHPTRD).
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Q(LDQ,*) — complex array. Output
Note: the second dimension of the array Q must be at least max(1,N).
On exit: the n by n unitary matrix Q.

LDQ - INTEGER. Input

On entry: the first dimension of the array Q as declared in the (sub)program from which
FO8GTF (CUPGTR/ZUPGTR) is called.

Constraint: LDQ 2 max(1,N).

WORK (*) — complex array. Workspace
Note: the dimension of the array WORK must be at least max(1,N-1).

INFO - INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed matrix Q differs from an exactly unitary matrix by a matrix E such that
IEN, = O(e),

where ¢ is the machine precision.

Further Comments

3
The total number of real floating-point operations is approximately _!%n_

The real analogue of this routine is FOSGFF (SOPGTR/DOPGTR).

Example

To compute all the eigenvalues and eigenvectors of the matrix A, where

-2.28 + 0.00i 1.78 — 2.03i 2.26 + 0.10i -0.12 + 2.53{
1.78 + 2.03i -1.12 + 0.00i 0.01 + 0.43i —-1.07 + 0.86i
2.26 - 0.10i 0.01 — 043i -0.37 + 0.00i 2.31 - 0.92i )

-0.12 - 2.53i -1.07 - 0.86i 2.31 + 0.92i -0.73 + 0.00i

using packed storage. Here A is Hermitian and must first be reduced to tridiagonal form by
FO8GSF (CHPTRD/ZHPTRD). The program then calls FOSGTF (CUPGTR/ZUPGTR) to form
Q, and passes this matrix to FO8JSF (CSTEQR/ZSTEQR) which computes the eigenvalues and
eigenvectors of A.

A=

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Pleasc read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8GTF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDZ
PARAMETER (NMAX=8, LDZ=NMAX)
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* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, N
CHARACTER UPLO
* .. Local Arrays
complex AP (NMAX* (NMAX+1)/2), TAU(NMAX), WORK(NMAX-1),
+ Z (LDZ, NMAX)
real D(NMAX), E(NMAX), RWORK(2*NMAX-2)
CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines ..
EXTERNAL X04DBF, chptrd, csteqr, cupgtr
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8GTF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read A from data file
READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN
READ (NIN,*) ((AP(I+J*(J-1)/2),J=I,N),I=1,N)
ELSE IF (UPLO.EQ.’L’) THEN
READ (NIN,*) ((AP(I+(2*N-J)*(J-1)/2),J=1,1),I=1,N)
END IF
* Reduce A to tridiagonal form T = (Q**H)*A*Q
CALL chptrd(UPLO, N, AP,D,E, TAU, INFO)
* Form Q explicitly, storing the result in 2
CALL cupgtr(UPLO, N, AP, TAU, Z, LDZ, WORK, INFO)
* Calculate all the eigenvalues and eigenvectors of A
CALL cstegr(’V’ ,N,D,E, Z,LDZ, RWORK, INFO)
WRITE (NOUT, *)
IF (INFO.GT.0) THEN

WRITE (NOUT,*) ’Failure to converge.’
ELSE

*

Print eigenvalues and eigenvectors

WRITE (NOUT,*) ’‘Eigenvalues’
WRITE (NOUT, 99999) (D(I),I=1,N)
WRITE (NOUT, *)

IFAIL = 0
*
CALL X04DBF(’General’,’ ’',N,N,2,LDZ,’Bracketed’,’'F7.4’,
+ ’Eigenvectors’,’Integer’,RLABS, ' Integer’, CLABS,
+ 80,0, IFAIL)
*
END IF
END IF
STOP

*
99999 FORMAT (8X,4(F7.4,11X%,:))
END

9.2. Program Data

FO8GTF Example Program Data
4 :Value of N
'L’ :Value of UPLO
(-2.28, 0.00)
(1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A
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9.3. Program Results
FO8GTF Example Program Results

Eigenvalues
-6.0002 -3.0030 0.5036 3.9996

Eigenvectors

1 2 3 4
1 ( 0.7299, 0.0000) (-0.2120, 0.1497) ( 0.1000,-0.3570) ( 0.1991, 0.4720)
2 (-0.1663,-0.2061) ( 0.7307, 0.0000) ( 0.2863,-0.3353) (-0.2467, 0.3751)
3 (-0.4165,-0.1417) (-0.3291, 0.0479) ( 0.6890, 0.0000) ( 0.4468, 0.1466)
4 ( 0.1743, 0.4162) ( 0.5200, 0.1329) ( 0.0662, 0.4347) ( 0.5612, 0.0000)
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FOS8GUF (CUPMTR/ZUPMTR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FO8GUF (CUPMTR/ZUPMTR) multiplies an arbitrary complex matrix C by the complex
unitary matrix  which was determined by FOSGSF (CHPTRD/ZHPTRD) when reducing a
complex Hermitian matrix to tridiagonal form.

Specification
SUBROUTINE FO08GUF (SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK, INFO)
ENTRY cupmtr (SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK, INFO)
INTEGER M, N, LDC, INFO
complex AP(*), TAU(*), C(LDC,*), WORK(*)

CHARACTER*1  SIDE, UPLO, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOBGSF (CHPTRD/ZHPTRD), which reduces
a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity
transformation: A = QTQ". FOSGSF represents the unitary matrix Q as a product of elementary
reflectors.

This routine may be used to form one of the matrix products
Qc, @¥c, €Q or CQY,
overwriting the result on C (which may be any complex rectangular matrix).

A common application of this routine is to transform a matrix Z of eigenvectors of T to the matrix
QZ of eigenvectors of A.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
SIDE — CHARACTER*1. Input
On entry: indicates how Q or Q¥ is to be applied to C as follows:
if SIDE = 'L', then Q or Q¥ is applied to C from the left;
if SIDE = 'R, then Q or Q¥ is applied to C from the right.
Constraint: SIDE = L' or R'.

UPLO - CHARACTER*1. Input

Onentry: this must be the same parameter UPLO as supplied to FO8GSF
(CHPTRD/ZHPTRD).

Constraint:. UPLO = 'U' or L'
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3:

10:

11:

Page 2

TRANS — CHARACTER*1. Input
On entry: indicates whether Q or Q¥ is to be applied to C as follows:
if TRANS = 'N', then Q is applied to C;
if TRANS = 'C', then Q" is applied to C.
Constraint: TRANS = 'N' or 'C'.

M - INTEGER. Input
Onentry: m, the number of rows of the matrix C; m is also the order of Q if SIDE = L'
Constraint: M 2 0.

N — INTEGER. Input
On entry: n, the number of columns of the matrix C; n is also the order of Q if SIDE = R'.
Constraint: N 2 0.

AP(*) — complex array. Input

Note: the dimension of the array AP must be at least max (1,M*(M+1)/2) if SIDE = 'L'
and at least max(1,N*(N+1)/2) if SIDE = R'.

Onentry: details of the vectors which define the elementary reflectors, as returned by
FO8GSF (CHPTRD/ZHPTRD).

TAU(*) — complex array. Input

Note: the dimension of the array TAU must be at least max(1,M-1) if SIDE = L' and at
least max(1,N-1) if SIDE = 'R'.

Onentry: further details of the elementary reflectors, as returned by FO8GSF
(CHPTRD/ZHPTRD).

C(LDC,*) — complex array. Input/ Output
Note: the second dimension of the array C must be at least max (1,N).
On entry: the m by n matrix C.
On exit: C is overwritten by QC or Q¥C or CQ" or CQ as specified by SIDE and TRANS.

LDC — INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
FO8GUF (CUPMTR/ZUPMTR) is called.

Constraint: LDC 2 max(1,M).

WORK(*) — complex array. Workspace

Note: the dimension of the array WORK must be at least max(1,N) if SIDE = 'L' and at
least max (1,M) if SIDE = R'.

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.
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7.

9.1.

Accuracy
The computed result differs from the exact result by a matrix £ such that
IEI, = O(8)ICI,,

where € is the machine precision.

Further Comments

The total number of real floating-point operations is approximately 8m’n if SIDE = 'L' and
8mn’ if SIDE = R
The real analogue of this routine is FOSGGF (SOPMTR/DOPMTR).

Example
To compute the two smallest eigenvalues, and the associated eigenvectors, of the matrix A, where

-2.28 + 0.00i 1.78 — 2.03i 2.26 + 0.10i -0.12 + 2.53{
1.78 + 2.03i -1.12 + 0.00i 0.01 + 0.43i -1.07 + 0.86i
226 - 0.10i 0.01 - 043; -0.37 + 0.00i 231 - 0.92i)°

-0.12 - 2.53; -1.07 - 0.86i 2.31 + 0.92i —-0.73 + 0.00i

using packed storage. Here A is Hermitian and must first be reduced to tridiagonal form T by
FO8GSF (CHPTRD/ZHPTRD). The program then calls FO8JJF (SSTEBZ/DSTEBZ) to
compute the requested eigenvalues and FO8JXF (CSTEIN/ZSTEIN) to compute the associated
eigenvectors of T. Finally FOBGUF (CUPMTR/ZUPMTR) is called to transform the
eigenvectors to those of A.

A=

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8GUF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDZ
PARAMETER (NMAX=8, LDZ=NMAX)
real ZERO
PARAMETER (ZERO=0.0e0)
* .. Local Scalars ..
real VL, VU
INTEGER I, IFAIL, INFO, J, M, N, NSPLIT
CHARACTER UPLO
* .. Local Arrays ..
cmnpkx AP (NMAX* (NMAX+1)/2), TAU(NMAX), WORK(NMAX),
+ Z(LDZ, NMAX)
real D(NMAX), E(NMAX), RWORK(5*NMAX), W(NMAX)
INTEGER IBLOCK(NMAX), IFAILV(NMAX), ISPLIT(NMAX),
+ IWORK ( NMAX)
CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines ..
EXTERNAL sstebz, X04DBF, chptrd, cstein, cupmtr
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO08GUF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read A from data file

READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN
READ (NIN,*) ((AP(I+J*(J-1)/2),J=I,N),I=1,N)
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ELSE IF (UPLO.EQ.’L’) THEN
READ (NIN,*) ((AP(I+(2*N-J)*(J-1)/2),J=1,1I),I=1,N)
END IF

* Reduce A to tridiagonal form T = (Q**xH)*Ax*xQ
CALL chptrd(UPLO,N,AP,D,E, TAU, INFO)
* Calculate the two smallest eigenvalues of T (same as A)

CALL sstebz(’'1’,’B’,N,VL,VU,1,2,2ERO,D,E,M,NSPLIT,W, IBLOCK,
+ ISPLIT, RWORK, IWORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.0) THEN

WRITE (NOUT,*) ’'Failure to converge.’
ELSE

WRITE (NOUT,*) ’Eigenvalues’

WRITE (NOUT,99999) (W(I),I=1,M)

*

Calculate the eigenvectors of T, storing the result in 2

CALL cstein(N,D,E,M,W, IBLOCK, ISPLIT, Z, LDZ, RWORK, IWORK,
+ IFAILV, INFO)

IF (INFO.GT.O) THEN
WRITE (NOUT,*) ’Failure to converge.’
ELSE

* Calculate the eigenvectors of A = Q * (eigenvectors of T)

CALL cupmitr(’ Left’ ,UPLO,’No transpose’,N,M,AP,TAU,Z,LDZ,
+ WORK, INFO)

* Print eigenvectors

WRITE (NOUT, *)

IFAIL = 0
*
CALL XO04DBF(’General’,’ ’',N,M,Z,LDZ,'Bracketed’,’'F7.4’,
+ ’Eigenvectors’,’ Integer’ ,RLABS, ' Integer’,
+ CLABS, 80,0, IFAIL)
*
END IF
END IF
END IF
STOP

*

99999 FORMAT (8X,4(F7.4,11X,:))
END

9.2. Program Data

F08GUF Example Program Data
4 :Value of N
'L’ :Value of UPLO
(-2.28, 0.00)
(1.78, 2.03) (-1.12, 0.00)
( 2.26,-0.10) ( 0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) ( 2.31, 0.92) (-0.73, 0.00) :End of matrix A
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9.3. Program Results
FO8GUF Example Program Results

Eigenvalues
-6.0002 -3.0030

Eigenvectors

1 2
( 0.7299, 0.0000) (-0.2595, 0.0000)
(-0.1663,-0.2061) ( 0.5969, 0.4214)
(-0.4165,-0.1417) (-0.2965,-0.1507)
( 0.1743, 0.4162) ( 0.3482, 0.4085)

W
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FOSHEF (SSBTRD/DSBTRD) - NAG Fortran Library Routine Document

Note: before using this routine, pleasc read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose
FOS8HEF (SSBTRD/DSBTRD) reduces a real symmetric band matrix to tridiagonal form.
Specification
SUBROUTINE FO8HEF (VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK, INFO)
ENTRY ssbtrd (VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK, INFO)
INTEGER N, KD, LDAB, LDQ, INFO
real AB(LDAB, *), D(*), E(*), Q(LDQ, *), WORK(*)

CHARACTER*1  VECT, UPLO
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

The symmetric band matrix A is reduced to symmetric tridiagonal form T by an orthogonal
similarity transformation: T = QTAQ. The orthogonal matrix Q is determined as a product of
Givens rotation matrices, and may be formed explicitly by the routine if required.

The routine uses a vectorisable form of the reduction, due to Kaufman [1].

References

[1] KAUFMAN, L.
Banded Eigenvalue Solvers on Vector Machines.
ACM Trans. Math. Softw., 10, pp. 73-86, 1984.

[2] PARLETT, B.N.
The Symmetric Eigenvalue Problem, §7-5.
Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

Parameters
VECT - CHARACTER*1. Input
On entry: indicates whether Q is to be returned as follows:
if VECT = 'V, then Q is returned;
if VECT = 'N, then Q is not required.
Constraint. VECT = 'V' or 'N'.

UPLO — CHARACTER*1. Input
On entry: indicates whether the upper or lower triangular part of A is stored as follows:
if UPLO = 'U’, then the upper triangular part of A is stored,;
if UPLO = L', then the lower triangular part of A is stored.
Constraint. UPLO = 'U' or L'

N - INTEGER. Input
On entry: n, the order of the matrix A.
Constraint: N 2 0.
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4. KD - INTEGER. Input

On entry: k, the number of super-diagonals of the matrix A if UPLO = 'U’, or the number of
sub-diagonals if UPLO = L'

Constraint: KD 2 0.

5:  AB(LDAB,*) — real array. Input/ Output
Note: the second dimension of the array AB must be at least max(1,N).

On entry: the n by n symmetric band matrix A, stored in rows 1 to k+1. More precisely, if
UPLO = U, the elements of the upper triangle of A within the band must be stored with
element a; in AB(k+1+i—j,j) for max(1j-k) < i < j; if UPLO = 'L, the elements of the
lower triangle of A within the band must be stored with element a; in AB(1+i-j,j) for
J S i < min(nj+k).

On exit: A is overwritten.

6: LDAB - INTEGER. Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
FOS8HEF (SSBTRD/DSBTRD) is called.

Constraint: LDAB 2 max(1,KD+1).

7:  D(*) - real array. Output
Note: the dimension of the array D must be at least max(1,N).
On exit: the diagonal elements of the tridiagonal matrix T.

8: E(*) — real array. Output
Note: the dimension of the array E must be at least max(1,N-1).
On exit: the off-diagonal elements of the tridiagonal matrix T.

9: Q(LDQ,*) — real array. Output

Note: the second dimension of the array Q must be at least max(1,N) if VECT = V', and
at least 1 if VECT = 'N'.

On exit: the n by n orthogonal matrix Q if VECT = 'V'.
Q is not referenced if VECT = 'N'.

10: LDQ - INTEGER. Input

On entry: the first dimension of the array Q as declared in the (sub)program from which
FOSHEF (SSBTRD/DSBTRD) is called.

Constraints: 1LDQ 2 max(1,N) if VECT = 'V,
LDQ 2 1if VECT = 'N.
11: WORK(*) — real array. Workspace
Note: the dimension of the array WORK must be at least max (1,N).

12: INFO - INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.
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7.

9.1.

Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix A + E, where
IEW, s c(n)élAll,,

¢(n) is a modestly increasing function of n, and € is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors
in the computation, but this does not affect the stability of the eigenvalues and eigenvectors.

The computed matrix @ differs from an exactly orthogonal matrix by a matrix E such that
IEN, = O(e),

where € is the machine precision.

Further Comments

The total number of floating-point operations is approximately 6n2k if VECT = 'N' with
3n* (k—1)/k additional operations if VECT = 'V".

The complex analogue of this routine is FOSHSF (CHBTRD/ZHBTRD).

Example
To compute all the eigenvalues and eigenvectors of the matrix A, where

499 004 0.22 0.00

004 1.05 -0.79 1.04

022 -0.79 -231 -1.30}

0.00 1.04 -1.30 -0.43

Here A is symmetric and is treated as a band matrix. The program first calls FOSHEF
(SSBTRD/DSBTRD) to reduce A to tridiagonal form T, and to form the orthogonal matrix Q;
the results are then passed to FOSJEF (SSTEQR/DSTEQR) which computes the eigenvalues and
eigenvectors of A.

A=

Program Text

Note: the listing of the cxample program presented below uses bold italicised terms to denot precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8HEF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, KMAX, LDAB, LDQ
PARAMETER (NMAX-S,KMAX=8,LDAB-KMAX+1,LDQ-NMAX)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, KD, N
CHARACTER UPLO
* .. Local Arrays ..
real AB(LDAB,NMAX), D(NMAX), E(NMAX-1), Q(LDQ, NMAX),
+ WORK (2*NMAX-2)
* .. External Subroutines ..
EXTERNAL ssbtrd, ssteqr, X04CAF
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
WRITE (NOUT,*) ’FO8HEF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N, KD
IF (N.LE.NMAX .AND. KD.LE.KMAX) THEN

*

Read A from data file
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READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN
DO 20 I =1, N
READ (NIN,*) (AB(KD+1+I-J,J),J=I,MIN(N,I+KD))
20 CONTINUE
ELSE IF (UPLO.EQ.’L’) THEN
DO 40 I =1, N
READ (NIN,*) (AB(1+I-J,J),J=MAX(1,I-KD),I)
40 CONTINUE
END IF

* Reduce A to tridiagonal form T = (Q**T)*A*Q (and form Q)
CALL nﬁhﬂ(’v’,UPLO,N,KD,AB,LDAB,D,E,Q,LDQ,WORK,INFO)

* Calculate all the eigenvalues and eigenvectors of A
CALL Sﬂqp%’v’,N,D,E,Q,LDQ,WORK,INFO)
WRITE (NOUT, *)
IF (INFO.GT.0) THEN

WRITE (NOUT,*) ’Failure to converge.’
ELSE

*

Print eigenvalues and eigenvectors

WRITE (NOUT,*) ’Eigenvalues’
WRITE (NOUT,99999) (D(I),I=1,N)
WRITE (NOUT, *)

IFAIL = 0

CALL XO04CAF(’General’,’ ’,N,N,Q,LDQ,’Eigenvectors’,IFAIL)

END IF
END IF
STOP
*
99999 FORMAT (3X,(8F8.4))
END

9.2. Program Data
FOS8HEF Example Program Data

4 2 :Values of N and KD
S :Value of UPLO

4.99

0.04 1.05

0.22 -0.79 -2.31
1.04 -1.30 -0.43 :End of matrix A

9.3. Program Results
FO8HEF Example Program Results

Eigenvalues
-2.9943 -0.7000 1.9974 4.9969

Eigenvectors

1 2 3 4
1 -0.0251 0.0162 0.0113 0.9995
2 0.0656 -0.5859 0.8077 0.0020
3 0.9002 -0.3135 -0.3006 0.0311
4 0.4298 0.7471 0.5070 -0.0071
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FOS8HSF (CHBTRD/ZHBTRD) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
FO8HSF (CHBTRD/ZHBTRD) reduces a complex Hermitian band matrix to tridiagonal form.

2. Specification
SUBROUTINE FO8HSF (VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK, INFO)

ENTRY chbtrd (VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK, INFO)
INTEGER N, KD, LDAB, LDQ, INFO

real D(*x), E(*)

complex AB(LDAB, *), Q(LDQ, *), WORK(*)

CHARACTER*1  VECT, UPLO
The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

The Hermitian band matrix A is reduced to real symmetric tridiagonal form T by a unitary
similarity transformation: T = Q¥AQ. The unitary matrix Q is determined as a product of
Givens rotation matrices, and may be formed explicitly by the routine if required.

The routine uses a vectorisable form of the reduction, due to Kaufman [1].

4. References

[1] KAUFMAN, L.
Banded Eigenvalue Solvers on Vector Machines.
ACM Trans. Math. Softw., 10, pp. 73-86, 1984.

(2] PARLETT, B.N.
The Symmetric Eigenvalue Problem, §7-5.
Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

5. Parameters
1:  VECT - CHARACTER*1. Input
On entry. indicates whether Q is to be returned as follows:
if VECT = 'V', then Q is returned;
if VECT = 'N, then Q is not required.
Constraint: VECT = 'V' or 'N'.

2:  UPLO - CHARACTER*1. Input
On entry: indicates whether the upper or lower triangular part of A is stored as follows:
if UPLO = 'U’, then the upper triangular part of A is stored;
if UPLO = 'L', then the lower triangular part of A is stored.
Constraint: UPLO = 'U' or L.

3: N - INTEGER. Input
On entry: n, the order of the matrix A.
Constraint: N 2 0.
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4:

10:

11:

12:

KD - INTEGER. Input

On entry: k, the number of super-diagonals of the matrix A if UPLO = 'U’, or the number of
sub-diagonals if UPLO = L'

Constraint: KD 2 0.

AB(LDAB,*) — complex array. Input/ Output
Note: the second dimension of the array AB must be at least max (1,N).

On entry: the n by n Hermitian band matrix A, stored in rows 1 to k+1. More precisely, if
UPLO = 'U', the elements of the upper triangle of A within the band must be stored with
element g,; in AB(k+1+i—j,j) for max(1,j-k) < i < j; if UPLO = 'L, the elements of the
lower triangle of A within the band must be stored with element a; in AB(1+i—j,j) for
Jj £ i < min(nj+k).

Onexit: A is overwritten.

LDAB — INTEGER. Input

On entry: the first dimension of the array AB as declared in the (sub)program from which
FO8HSF (CHBTRD/ZHBTRD) is called.

Constraint: LDAB 2 max(1,KD+1).

D(*) — real array. Output
Note: the dimension of the array D must be at least max(1,N).
On exit: the diagonal elements of the tridiagonal matrix 7.

E(*) — real array. Output
Note: the dimension of the array E must be at least max(1,N-1).
On exit: the off-diagonal elements of the tridiagonal matrix T.

Q(LDQ,*) — complex array. Output

Note: the second dimension of the array Q must be at least max(1,N) if VECT = V', and
at least 1 if VECT = 'N'.

On exit: the n by n unitary matrix Q if VECT = V'
Q is not referenced if VECT = 'N'.

LDQ - INTEGER. Input

On entry: the first dimension of the array Q as declared in the (sub)program from which
FOSHSF (CHBTRD/ZHBTRD) is called.

Constraints: LDQ 2 max(1,N) if VECT = V',
LDQ = 1if VECT = 'N.
WORK(*) — complex array. Workspace
Note: the dimension of the array WORK must be at least max(1,N).

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.
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7. Accuracy
The computed tridiagonal matrix T is exactly similar to a nearby matrix A + E, where
lEN, < c(n)ellAll,,
c(n) is a modestly increasing function of n, and € is the machine precision.

The elements of T themselves may be sensitive to small perturbations in A or to rounding errors
in the computation, but this does not affect the stability of the eigenvalues and eigenvectors.

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that
IEl, = O(e),

where € is the machine precision.

8. Further Comments
The total number of real floating-point operations is approximately 20n2k if VECT = 'N' with
10n* (k~1)/k additional operations if VECT = 'V'.
The real analogue of this routine is FOSHEF ( SSBTRD/DSBTRD).

9. Example
To compute all the eigenvalues and eigenvectors of the matrix A, where

-3.13 + 0.00i 194 — 2.10i -3.40 + 0.25i 0.00 + 0.00i
1.94 + 2.10i -1.91 + 0.00i -0.82 — 0.89i —0.67 + 0.34i
-3.40 - 0.25; -0.82 + 0.89i -2.87 + 0.00i -2.10 — 0.16i |
0.00 + 0.00i -0.67 — 0.34i -2.10 + 0.16; 0.50 + 0.00i

Here A is Hermitian and is treated as a band matrix. The program first calls FOSHSF
(CHBTRD/ZHBTRD) to reduce A to tridiagonal form T, and to form the unitary matrix Q; the
results are then passed to FOBJSF (CSTEQR/ZSTEQR) which computes the eigenvalues and
eigenvectors of A.

A=

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8HSF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, KMAX, LDAB, LDQ
PARAMETER (NMAX=8, KMAX=8, LDAB=KMAX+1 » LDO=NMAX)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, KD, N
CHARACTER UPLO
* .. Local Arrays ..
complex AB(LDAB,NMAX), Q(LDQ, NMAX), WORK (NMAX)
real D(NMAX), E(NMAX-1), RWORK ( 2*NMAX~-2)
CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines ..
EXTERNAL X04DBF, chbtrd, csteqr
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* .. Executable Statements ..
WRITE (NOUT,*) ’FO8HSF Example Program Results’
* Skip heading in data file

READ (NIN, x)
READ (NIN,*) N, KD
IF (N.LE.NMAX .AND. KD.LE.KMAX) THEN

*

Read A from data file
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FOSHSF (CHBTRD/ZHBTRD)

READ (NIN,*) UPLO

IF (UPLO.EQ.’U’) THEN

DO 20I =1, N

F08 — Least-squares and Eigenvalue Problems (LAPACK)

READ (NIN,*) (AB(KD+1+I-J,J),J=I,MIN(N,I+KD))

20 CONTINUE

ELSE IF (UPLO.EQ.’L’) THEN

DO 40 I =1, N

READ (NIN,*) (AB(1+I-J,J),J=MAX(1,I-KD),I)

40 CONTINUE
END IF

* Reduce A to tridiagonal form T = (Q**H)*A*Q (and form Q)

CALL chbtrd(’V’ ,UPLO,N,KD,AB, LDAB,D,E,Q, LDQ, WORK, INFO)

* Calculate all the eigenvalues and eigenvectors of A

CALL cstegqr(’V’ ,N,D,E,Q,LDQ, RWORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.0) THEN

WRITE (NOUT,*) ’‘Failure to converge.’

ELSE

*

Print eigenvalues and eigenvectors

WRITE (NOUT,*) ’‘Eigenvalues’
WRITE (NOUT, 99999) (D(I),I=1,N)

WRITE (NOUT, *)

IFAIL = 0
*
CALL XO04DBF(’General’,’ ’* ,N,N,Q,LDQ, 'Bracketed’,'F7.4',
+ 'Eigenvectors',’Integer’,RLABS,’Integer',CLABS,
+ 80,0, IFAIL)
*
END IF
END IF
STOP

*

99999 FORMAT (8X,4(F7.4,11X%,:))

END

9.2. Program Data

FO8HSF Example Program Data
4 2
and KD
ILI
(-3.13, 0.00) ( 1.94,-2.10)
( 1.94, 2.10) (-1.91, 0.00)
(-3.40,-0.25) (-0.82, 0.89)
(-0.67,-0.34)

9.3. Program Results

(
(
(
(

FO8HSF Example Program Results

Eigenvalues

3.40, 0.25)

0.82,-0.89) (-0.67, 0.34)
2.87, 0.00) (-2.10,-0.16)
2.10, 0.16) ( 0.50, 0.00)

-7.0042 -4.0038 0.5968

Eigenvectors

1
( 0.7293, 0.0000)
(-0.1654,-0.2046)
( 0.6081, 0.0301)
( 0.1653,-0.0303)

S whRr
o~~~ o~
[oNeNe N

.2128,
.7316, 0.0000)

.2775,-0.1378)

2
0.1511)

3
(-0.3354,-0.1604) (-0.5114,-0.0163)
(-0.2804,-0.3413) (-0.2374,-0.3796)
.3910,-0.3843) (-0.0144, 0.1532) ( 0.5523, 0.0000)
( 0.8019, 0.0000) (-0.4517, 0.1693)

:Values of N

:Value of UPLO

:End of matrix A

3.0012

4

Page 4 (last)
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FO8JEF (SSTEQR/DSTEQR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOBJEF (SSTEQR/DSTEQR) computes all the eigenvalues, and optionally all the eigenvectors,
of a real symmetric tridiagonal matrix, or of a real symmetric matrix which has been reduced to
tridiagonal form.

Specification
SUBROUTINE FO8JEF (COMPZ, N, D, E, 2, LDZ, WORK, INFO)
ENTRY ssteqr  (COMPZ, N, D, E, Z, LDZ, WORK, INFO)
INTEGER N, LDZ, INFO
real D(*), E(*), Z(LDZ,*), WORK(*)

CHARACTER*1  COMPZ
The ENTRY statement enables the routine to be called by its LAPACK name.

Description
This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real
symmetric tridiagonal matrix T. In other words, it can compute the spectral factorization of T as
T = ZAZ",
where A is a diagonal matrix whose diagonal elements are the eigenvalues A;, and Z is the
orthogonal matrix whose columns are the eigenvectors z ;- Thus
Tz, = Az, fori = 1,2,...n.
The routine may also be used to compute all the eigenvalues and eigenvectors of a real
symmetric matrix A which has been reduced to tridiagonal form T:
A = QTQT, where Q is orthogonal,
(Q2)A(Q2)".
In this case, the matrix Q must be formed explicitly and passed to FO8JEF, which must be called

with COMPZ = 'V'. The routines which must be called to perform the reduction to tridiagonal
form and form Q are:

full matrix FO8FEF (SSYTRD/DSYTRD) + FOSFFF (SORGTR/DORGTR)
full matrix, packed storage FO8GEF (SSPTRD/DSPTRD) + F08GFF (SOPGTR/DOPGTR)
band matrix FOS8HEF (SSBTRD/DSBTRD) with VECT = 'V'.

FO8JEF uses the implicitly shifted QR algorithm, switching between the QR and QL variants in
order to handle graded matrices effectively (see Greenbaum and Dongarra [2]). The
eigenvectors are normalized so that ||z;], = 1, but are determined only to within a factor +1.

If only the eigenvalues of T are required, it is more efficient to call FOS8JFF (SSTERF/DSTERF)
instead. I T is positive-definite, small eigenvalues can be computed more accurately by FO8JGF
(SPTEQR/DPTEQR).

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §8.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

[2] GREENBAUM, A. and DONGARRA, J.J.
Experiments with QR/QL Methods for the Symmetric Tridiagonal Eigenproblem.
LAPACK Working Note No. 17 (Technical Report CS-89-92), University of Tennessee,
Knoxville, 1989.
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[3] PARLETT, B.N.
The Symmetric Eigenvalue Problem, §8.
Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

5. Parameters
1: COMPZ - CHARACTER*1. Input
On entry: indicates whether the eigenvectors are to be computed as follows:

if COMPZ = 'N', then only the eigenvalues are computed (and the array Z is not
referenced);

if COMPZ = T, then the eigenvalues and eigenvectors of T are computed (and the
array Z is initialized by the routine);

if COMPZ = 'V', then the eigenvalues and eigenvectors of A are computed (and the
array Z must contain the matrix Q on entry).

Constraint: COMPZ = 'N', T or 'V'.

2: N - INTEGER. Input
On entry: n, the order of the matrix T.
Constraint: N 2 0.

3:  D(*) — real array. Input/ Output
Note: the dimension of the array D must be at least max(1,N).
On entry: the diagonal elements of the tridiagonal matrix T.

On exit: the n eigenvalues in ascending order, unless INFO > 0 (in which case see Section
6).

4:  E(*) — real array. Input/ Output
Note: the dimension of the array E must be at least max(1,N-1).
On entry: the off-diagonal elements of the tridiagonal matrix T.
On exit: the array is overwritten.

5:  Z(LDZ,*) — real array. Input/ Output

Note: the second dimension of the array Z must be at least max(1,N) if COMPZ = V' or
T, and at least 1 if COMPZ = 'N'.

On entry: if COMPZ = 'V', Z must contain the orthogonal matrix Q from the reduction to
tridiagonal form. If COMPZ = T, Z need not be set.

On exit: if COMPZ = 'T or 'V, the n required orthonormal eigenvectors stored by columns;
the ith column corresponds to the ith eigenvalue, where i = 1,2,...,n, unless INFO > 0.

Z is not referenced if COMPZ = 'N.

6: LDZ — INTEGER. Input

On entry: the first dimension of the array Z as declared in the (sub)program from which
FO8JEF (SSTEQR/DSTEQR) is called.

Constraints: LDZ 2 1 if COMPZ = 'N',
LDZ = max(1,N) if COMPZ = V'or T.

7:  WORK(*) — real array. Workspace

Note: the dimension of the array WORK must be at least max(1,2*(N-1)) if
COMPZ = V' or T, and at least 1 if COMPZ = N

WORK is not referenced if COMPZ = 'N'.
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8:

INFO - INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —j, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

The algorithm has failed to find all the eigenvalues after a total of 30xN iterations. In this
case, D and E contain on exit the diagonal and off-diagonal elements, respectively, of a
tridiagonal matrix orthogonally similar to T. If INFO = i, then i off-diagonal elements have
not converged to zero.

Accuracy
The computed eigenvalues and eigenvectors are exact for a nearby matrix T + E, where

EN; = O(&)ITl,,
and € is the machine precision.
If A; is an exact eigenvalue and A, is the corresponding computed value, then

1Ai~A;| S c(n)éliTll,,
where c(n) is a modestly increasing function of n.

If z; is the corresponding exact eigenvector, and z; is the corresponding computed eigenvector,
then the angle 6(Z,,z;) between them is bounded as follows:

- c(n) €Ty,
9(2,-,2;) < m.
nj

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all
the other eigenvalues.

Further Comments

The total number of floating-point operations is typically about 24n if COMPZ = 'N' and about
7n® if COMPZ = 'V' or T, but depends on how rapidly the algorithm converges. When
COMPZ = "N/, the operations are all performed in scalar mode; the additional operations to
compute the eigenvectors when COMPZ = V' or 'T' can be vectorized and on some machines
may be performed much faster.

The complex analogue of this routine is FO8JSF (CSTEQR/ZSTEQR).

Example
To compute all the eigenvalues and eigenvectors of the symmetric tridiagonal matrix T, where
-6.99 —044 0.00 0.00
-0.44 792 -263 0.00
0.00 -2.63 234 -1.18 )"
0.00 0.00 -1.18 0.32

See also the examples for FOSFFF, FO8GFF or FOSHEF, which illustrate the use of this routine
to compute the eigenvalues and eigenvectors of a full or band symmetric matrix.

T =

[NP2478116] Page 3



FO8JEF (SSTEQR/DSTEQR) F08 — Least-squares and Eigenvalue Problems (LAPACK)

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

*

*

FO8JEF Example Program Text
Mark 16 Release. NAG Copyright 1992.

.. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDZ
PARAMETER (NMAX=8, LDZ=NMAX)
.. Local Scalars ..

INTEGER I, IFAIL, INFO, N
.. Local Arrays ..

real D(NMAX), E(NMAX-1), WORK(2*NMAX-2), Z(LDZ, NMAX)
.. External Subroutines ..
EXTERNAL ssteqr, X04CAF

.. Executable Statements ..

WRITE (NOUT,*) ’'FO8JEF Example Program Results’
Skip heading in data file

READ (NIN, *)

READ (NIN,*) N

IF (N.LE.NMAX) THEN

Read T from data file

READ (NIN,*) (D(I),I=1,N)
READ (NIN,*) (E(I),I=1,N-1)

Calculate all the eigenvalues and eigenvectors of T
CALL sstegr(’'1’,N,D,E,Z,LDZ,WORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.0) THEN

WRITE (NOUT,*) ‘Failure to converge.’
ELSE

Print eigenvalues and eigenvectors

WRITE (NOUT,*) ’‘Eigenvalues’
WRITE (NOUT, 99999) (D(I),I=1,N)
WRITE (NOUT, *)

IFAIL = 0

CALL XO04CAF(’General’,’ ',N,N,Z,LDZ,'Eigenvectors’,IFAIL)
END IF

END IF
STOP

99999 FORMAT (3X,(8F8.4))

END

9.2. Program Data
FOS8JEF Example Program Data

Page 4

4
-6.99 7.92 2.34 0.32
-0.44

:Value of N

-2.63 -1.18 :End of matrix T
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9.3. Program Results
FO8JEF Example Program Results

Eigenvalues
-7.0037 -0.4059 2.0028 8.9968

Eigenvectors

1 2 3 4
1 0.9995 -0.0109 -0.0167 -0.0255
2 0.0310 0.1627 0.3408 0.9254
3 0.0089 0.5170 0.7696 -0.3746
4 0.0014 0.8403 -0.5397 0.0509
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FO8JFF (SSTERF/DSTERF) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FO8JFF (SSTERF/DSTERF) computes all the eigenvalues of a real symmetric tridiagonal
matrix.

Specification
SUBROUTINE FO08JFF (N, D, E, INFO)
ENTRY ssterf (N, D, E, INFO)
INTEGER N, INFO
real D(*), E(*)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine computes all the eigenvalues of a real symmetric tridiagonal matrix, using a
square-root-free variant of the QR algorithm.

The routine uses an explicit shift, and, like FOSJEF (SSTEQR/DSTEQR), switches between the
QR and QL variants in order to handle graded matrices effectively (see Greenbaum and Dongarra
(n.

References

[11 GREENBAUM, A. and DONGARRA, J.J.
Experiments with QR/QL Methods for the Symmetric Tridiagonal Eigenproblem.
LAPACK Working Note No. 17 (Technical Report CS-89-92), University of Tennessee,
Knoxville, 1989.

[2] PARLETT, B.N.
The Symmetric Eigenvalue Problem, §8-15.
Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

Parameters

N — INTEGER. Input
On entry: n, the order of the matrix 7.
Constraint: N 2 0.

D(*) — real array. Input/ Output
Note: the dimension of the array D must be at least max(1,N).
Onentry: the diagonal elements of the tridiagonal matrix T.
On exit: the n eigenvalues in ascending order, unless INFO > 0 (in which case see Section
6).

E(*) — real array. Input/ Output
Note: the dimension of the array E must be at least max(1,N-1).
On entry: the off-diagonal elements of the tridiagonal matrix T.
On exit: the array is overwritten.

INFO - INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).
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6.

9.1.

Page 2

Error Indicators and Warnings

INFO < 0
If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

The algorithm has failed to find all the eigenvalues after a total of 30xN iterations. If
INFO = i, then on exit i elements of E have not converged to zero.

Accuracy

The computed eigenvalues are exact for a nearby matrix T + E, where
IEl, = O(&)IT,,

and ¢ is the machine precision.

If A, is an exact eigenvalue and A, is the corresponding computed value, then
1A~4;| < c(n)ell,,

where c(n) is a modestly increasing function of n.

Further Comments

The total number of floating-point operations is typically about 14n%, but depends on how
rapidly the algorithm converges. The operations are all performed in scalar mode.

There is no complex analogue of this routine.

Example

To compute all the eigenvalues of the symmetric tridiagonal matrix T, where

-6.99 -0.44 0.00 0.00
-0.44 792 -263 0.00

T=1 000-263 234 -118]
0.00 000 —1.18 032
Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FOS8JFF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX
PARAMETER (NMAX=8)
* .. Local Scalars ..
INTEGER I, INFO, N
* .. Local Arrays ..
real D(NMAX), E(NMAX-1)
* .. External Subroutines
EXTERNAL ssterf
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8JFF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

*

Read T from data file
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READ (NIN,*) (D(I),I=1,N)
READ (NIN,*) (E(I),I=1,N-1)

*

Calculate the eigenvalues of T
CALL ssterf(N,D,E, INFO)

WRITE (NOUT, %)
IF (INFO.GT.0) THEN

WRITE (NOUT,*) ’'Failure to converge.’
ELSE

WRITE (NOUT,*) ’Eigenvalues’

WRITE (NOUT,99999) (D(I),I=1,N)

FO8JFF (SSTERF/DSTERF)

END IF
END IF
STOP
*
99999 FORMAT (3X, (9F8.4))
END
9.2. Program Data
FO8JFF Example Program Data
4 :Value of N
-6.99 7.92 2.34 0.32
-0.44 -2.63 -1.18 :End of matrix T
9.3. Program Results
FO8JFF Example Program Results
Eigenvalues
=7.0037 -0.4059 2.0028 8.9968
[NP2478/16)
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FO8JGF (SPTEQR/DPTEQR) -~ NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FO8JGF (SPTEQR/DPTEQR) computes all the eigenvalues, and optionally all the eigenvectors,
of a real symmetric positive-definite tridiagonal matrix, or of a real symmetric positive-definite
matrix which has been reduced to tridiagonal form.

Specification
SUBROUTINE FO8JGF (COMPZ, N, D, E, Z, LDZ, WORK, INFO)
ENTRY spteqr  (COMPZ, N, D, E, 2, LDZ, WORK, INFO)
INTEGER N, LDZ, INFO
real D(*), E(*), Z(LDZ,*), WORK(*)

CHARACTER*1  COMPZ
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real
symmetric positive-definite tridiagonal matrix T. In other words, it can compute the spectral
factorization of T as

T = ZAZ",
where A is a diagonal matrix whose diagonal elements are the eigenvalues A, and Z is the
orthogonal matrix whose columns are the eigenvectors z,. Thus

Tz, = Az, fori = 1,2,..,n.
The routine may also be used to compute all the eigenvalues and eigenvectors of a real
symmetric positive-definite matrix A which has been reduced to tridiagonal form T:

A = QTQT, where Q is orthogonal
(92)A(Q@2)".
In this case, the matrix Q must be formed explicitly and passed to FO8JGF, which is called with

COMPZ = 'V'. The routines which must be called to perform the reduction to tridiagonal form
and form Q are:

full matrix FOBFEF (SSYTRD/DSYTRD) + FO8FFF (SORGTR/DORGTR)
full matrix, packed storage FOS8GEF (SSPTRD/DSPTRD) + FO8GFF (SOPGTR/DOPGTR)
band matrix FO8HEF (SSBTRD/DSBTRD) with VECT = 'V

The routine first factorizes T as LDL" where L is unit lower bidiagonal and D is diagonal. It
forms the bidiagonal matrix B = LD!, and then calls FOSMEF (SBDSQR/DBDSQR) to
compute the singular values of B which are the same as the eigenvalues of T. The method used
by the routine allows high relative accuracy to be achieved in the small eigenvalues of T. The
eigenvectors are normalized so that ||z,||, = 1, but are determined only to within a factor *1.

References

[1] BARLOW, J. and DEMMEL, J.
Computing Accurate Eigensystems of Scaled Diagonally Dominant Matrices.
SIAM J. Num. Anal., 27, pp. 762-791, 1990.
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s.
1:

*

=

o

Parameters
COMPZ - CHARACTER*1. Input
On entry: indicates whether the eigenvectors are to be computed as follows:

if COMPZ = 'N', then only the eigenvalues are computed (and the array Z is not
referenced);

if COMPZ = 'T, then the eigenvalues and eigenvectors of T are computed (and the
array Z is initialized by the routine);

if COMPZ = 'V, then the eigenvalues and eigenvectors of A are computed (and the
array Z must contain the matrix Q on entry).

Constraint: COMPZ = 'N', T or 'V'.

N — INTEGER. Input
On entry: n, the order of the matrix 7.
Constraint: N 2 0.

D(*) — real array. Input/ Output
Note: the dimension of the array D must be at least max(1,N).
On entry: the diagonal elements of the tridiagonal matrix T.

On exit: the n eigenvalues in descending order, unless INFO > 0,.in which case the array is
overwritten.

E(*) — real array. Input/ Output
Note: the dimension of the array E must be at least max(1,N-1).
On entry: the off-diagonal elements of the tridiagonal matrix T.
On exit: the array is overwritten.

Z(LDZ,*) — real array. Input/ Output

Note: the second dimension of the array Z must be at least max(1,N) if COMPZ = V' or
T, and at least 1 if COMPZ = 'N'.

On entry: if COMPZ = 'V', Z must contain the orthogonal matrix Q from the reduction to
tridiagonal form. If COMPZ = T, Z need not be set.

Onexit: if COMPZ = 'T or 'V, the n required orthonormal eigenvectors stored by columns;
the ith column corresponds to the ith eigenvalue, where i = 1,2,...,n, unless INFO > 0.

Z is not referenced if COMPZ = 'N'.

LDZ - INTEGER. Input

On entry: the first dimension of the array Z as declared in the (sub)program from which
FO8JGF (SPTEQR/DPTEQR) is called.

Constraints: LDZ 2 1 if COMPZ = 'N',
LDZ 2 max(1,N) if COMPZ = 'V'or T.
WORK (*) — real array. Workspace

Note: the dimension of the array WORK must be at least max(1,4*(N-1)) if
COMPZ = V'or T, and at least 1 if COMPZ = 'N'.

WORK is not referenced if COMPZ = 'N'.

INFO - INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).
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6.

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

If INFO = i, the leading minor of order i is not positive-definite and the Cholesky
factorization of T could not be completed. Hence T itself is not positive-definite.

If INFO = N + i, the algorithm to compute the singular values of the Cholesky factor B
failed to converge; i off-diagonal elements did not converge to zero.

Accuracy
The eigenvalues and eigenvectors of T are computed to high relative accuracy which means that
if they vary widely in magnitude, then any small eigenvalues (and corresponding eigenvectors)
will be computed more accurately than, for example, with the standard QR method. However, the
reduction to tridiagonal form (prior to calling the routine) may exclude the possibility of
obtaining high relative accuracy in the small eigenvalues of the original matrix if its eigenvalues
vary widely in magnitude.
To be more precise, let H be the tridiagonal matrix defined by H = DTD, where D is diagonal
withd, = ¢;},and h; = 1for all i. If A, is an exact eigenvalue of T and 1, is the corresponding
computed value, then

1Al S c(n)ex, (H)A,
where c(n) is a modestly increasing function of n, € is the machine precision, and x, (H) is the
condition number of H with respect to inversion defined by: «, (H) = |H||.||[H].
If z;, is the corresponding exact eigenvector of T, and Z, is the corresponding computed
eigenvector, then the angle 6(z,,z;) between them is bounded as follows:

c(n)ex,(H
0( i“ ’Zi) < _(_._)._._%(—.)_
relgap,;

where relgap; is the relative gap between A, and the other eigenvalues, defined by

relgap;, = minM
8 = T L)

Further Comments

The total number of floating-point operations is typically about 30n> if COMPZ = 'N' and about
6n® if COMPZ = 'V' or T, but depends on how rapidly the algorithm converges. When
COMPZ = 'N/, the operations are all performed in scalar mode; the additional operations to
compute the eigenvectors when COMPZ = 'V' or T' can be vectorized and on some machines
may be performed much faster.

The complex analogue of this routine is FOSJUF (CPTEQR/ZPTEQR).

Example

To compute all the eigenvalues and eigenvectors of the symmetric positive-definite tridiagonal
matrix T, where

416 3.17 0.00 0.00
317 525 -097 0.00
0.00 -097 1.09 055)
0.00 000 0.55 0.62

T =
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO08JGF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDZ
PARAMETER (NMAX=8, LDZ=NMAX)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, N
* .. Local Arrays ..
real D(NMAX), E(NMAX-1), WORK(4*NMAX-4), Z(LDZ, NMAX)
* .. External Subroutines ..
EXTERNAL spteqr, XO0ACAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8JGF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

* Read T from data file

READ (NIN,*) (D(I),I=1,N)
READ (NIN,*) (E(I),I=1,N-1)

* Calculate all the eigenvalues and eigenvectors of T
CALL sptegr(’1’,N,D,E,Z,LDZ, WORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.0 .AND. INFO.LE.N) THEN
WRITE (NOUT,*) ’'T is not positive-definite.’
ELSE IF (INFO.GT.N) THEN
WRITE (NOUT,*) ’Failure to converge.’
ELSE

*

Print eigenvalues and eigenvectors

WRITE (NOUT,*) ’Eigenvalues’
WRITE (NOUT,99999) (D(I),I=1,N)
WRITE (NOUT, *)

IFAIL = 0

CALL XO04CAF(’General’,’ ’,N,N,2,1LDZ,’Eigenvectors’,IFAIL)

END IF
END IF
STOP
*
99999 FORMAT (3X,(8F8.4))
END

9.2. Program Data
FO8JGF Example Program Data

4 :Value of N
4.16 5.25 1.09 0.62
3.17 -0.97 0.55 :End of matrix T
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9.3. Program Results
FO8JGF Example Program Results

Eigenvalues
8.0023 1.9926 1.0014 0.1237

Eigenvectors

1 2 3 4
1 0.6326 0.6245 -0.4191 0.1847
2 0.7668 —-0.4270 0.4176 -0.2352
3 -0.1082 0.6071 0.4594 -0.6393
4 -0.0081 0.2432 0.6625 0.7084

[NP2478/16) Page 5 (last)






FO8 - Least-squares and Eigenvalue Problems (LAPACK) FO08JJF (SSTEBZ/DSTEBZ)

F08JJF (SSTEBZ/DSTEBZ) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
FOBJJF (SSTEBZ/DSTEBZ) computes some (or all) of the eigenvalues of a real symmetric
tridiagonal matrix, by bisection.
2. Specification
SUBROUTINE F08JJF (RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M,

1 NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)
ENTRY sstebz (RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M,
1 NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO)
INTEGER N, IL, IU, M, NSPLIT, IBLOCK(*), ISPLIT(*), IWORK(*),
1 INFO

real VL, VU, ABSTOL, D(*), E(*), W(*), WORK(*)

CHARACTER*1  RANGE, ORDER
The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine uses bisection to compute some or all of the eigenvalues of a real symmetric
tridiagonal matrix T.
It searches for zero or negligible off-diagonal elements of T to see if the matrix splits into block
diagonal form:
Tl
T,

T
4
It performs bisection on each of the blocks T; and returns the block index of each computed

eigenvalue, so that a subsequent call to FOSJKF (SSTEIN/DSTEIN) to compute eigenvectors
can also take advantage of the block structure.

4. References

[1] KAHAN, W.
Accurate Eigenvalues of a Symmetric Tridiagonal Matrix.
Report CS41, Computer Science Department, Stanford University, 1966.

5. Parameters
1:  RANGE - CHARACTER*1. Input
On entry: indicates which eigenvalues are required as follows:

if RANGE = ‘A', then all the eigenvalues are required;
if RANGE = 'V', then all the eigenvalues in the half-open interval (VL,VU] are
required;

if RANGE = T, then eigenvalues with indices IL to IU are required.
Constraint: RANGE = A', V' or T.
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2:

10:

11:

12:

13:

Page 2

ORDER — CHARACTER*1. Input

On entry: indicates the order in which the eigenvalues and their block numbers are to be
stored as follows:

if ORDER = 'B', then the eigenvalues are to be grouped by split-off block and ordered
from smallest to largest within each block;

if ORDER = 'E, then the eigenvalues for the entire matrix are to be ordered from
smallest to largest.

Constraint: ORDER = 'B' or E'.

N - INTEGER. Input
On entry: n, the order of the matrix T.
Constraint: N 2 0.

VL - real. Input
VU - real. Input

Onentry: if RANGE = 'V', the lower and upper bounds, respectively, of the half-open
interval (VL,VU] within which the required eigenvalues lie.

Not referenced if RANGE = '‘A'or T.
Constraint: VL < VU if RANGE = 'V'.

IL — INTEGER. Input
IU - INTEGER. Input

On entry. if RANGE = 'T, the indices of the first and last eigenvalues, respectively, to be
computed (assuming that the eigenvalues are in ascending order).

Not referenced if RANGE = 'A' or 'V'".
Constraint: 1 < IL € IU € Nif RANGE = T.

ABSTOL - real. Input

On entry: the absolute tolerance to which each eigenvalue is required. An eigenvalue (or
cluster) is considered to have converged if it lies in an interval of width < ABSTOL. If
ABSTOL < 0.0, then the tolerance is taken as machine precision x ||T},.

D(*) — real array. Input

Note: the dimension of the array D must be at least max (1,N).
On entry: the diagonal elements of the tridiagonal matrix T.

E(*) — real array. Input
Note: the dimension of the array E must be at least max(1,N-1).
On entry: the off-diagonal elements of the tridiagonal matrix T.

M - INTEGER. Output
On exit: m, the actual number of eigenvalues found.

NSPLIT — INTEGER. Output
On exit: the number of diagonal blocks which constitute the tridiagonal matrix T.

W(*) — real array. Output
Note: the dimension of the array W must be at least max(1,N).
On exit: the required eigenvalues of the tridiagonal matrix T stored in W(1) to W(m).
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14:

15:

16:

17:

18:

IBLOCK (*) — INTEGER array. Output
Note: the dimension of the array IBLOCK must be at least max(1,N).

On exit: at each row/column j where E(j) is zero or negligible, T is considered to split into
a block diagonal matrix and IBLOCK (i) contains the block number of the eigenvalue
stored in W(i), for i = 1,2,...,m. Note that IBLOCK(i) < 0 for some i whenever
INFO = 1 or 3 (see Section 6) and RANGE = ‘A’ or 'V'.

ISPLIT (*) — INTEGER array. Output
Note: the dimension of the array ISPLIT must be at least max (1,N).

Onexit: the leading NSPLIT elements contain the points at which T splits up into
sub-matrices as follows. The first sub-matrix consists of rows/columns 1 to ISPLIT(1), the
second sub-matrix consists of rows/columns ISPLIT(1) + 1 to ISPLIT(2), ..., and the
NSPLIT(th) sub-matrix consists of rows/columns ISPLIT(NSPLIT-1) +1 to
ISPLIT(NSPLIT) (= n).

WORK(*) — real array. Workspace
Note: the dimension of the array WORK must be at least max(1,4*N).

IWORK (*) — INTEGER array. Workspace
Note: the dimension of the array IWORK must be at least max (1,3*N).

INFO - INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO = 1

If RANGE = ‘A’ or 'V', the algorithm failed to compute some (or all) of the required
eigenvalues to the desired accuracy. More precisely, IBLOCK (i ) < 0 indicates that the ith
eigenvalue (stored in W (i) ) failed to converge.

INFO = 2
If RANGE = T, the algorithm failed to compute some (or all) of the required eigenvalues.
Try calling the routine again with RANGE = ‘A,
INFO = 3
If RANGE = T, see the description above for INFO = 2.
If RANGE = ‘A’ or V', see the description above for INFO = 1.

INFO = 4

No eigenvalues have been computed. The floating-point arithmetic on the computer is not
behaving as expected.

If failures with INFO 2 1 are causing persistent trouble and the user has checked that the routine
is being called correctly, please contact NAG.
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7. Accuracy

The eigenvalues of T are computed to high relative accuracy which means that if they vary
widely in magnitude, then any small eigenvalues will be computed more accurately than, for
example, with the standard QR method. However, the reduction to tridiagonal form (prior to
calling the routine) may exclude the possibility of obtaining high relative accuracy in the small
eigenvalues of the original matrix if its eigenvalues vary widely in magnitude.

8. Further Comments
There is no complex analogue of this routine.

9. Example
See the example for FOSFGF (SORMTR/DORMTR).
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FO8JKF (SSTEIN/DSTEIN) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

FO8JKF (SSTEIN/DSTEIN) computes the eigenvectors of a real symmetric tridiagonal matrix
corresponding to specified eigenvalues, by inverse iteration.

2. Specification
SUBROUTINE FO8JKF (N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,

1 IFAILV, INFO)

ENTRY sstein (N, D, E, M, W, IBLOCK, ISPLIT, %, LDZ, WORK, IWORK,
1 IFAILV, INFO)

INTEGER N, M, IBLOCK(*), ISPLIT(*), LDZ, IWORK(*), IFAILV(*),
1 INFO

real D(*), E(*), W(*), Z(LDZ,*), WORK(*)

The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding to
specified eigenvalues, by inverse iteration (see Jessup and Ipsen [2]). It is designed to be used in
particular after the specified eigenvalues have been computed by FO8JJF (SSTEBZ/DSTEBZ)
with ORDER = B, but may also be used when the eigenvalues have been computed by other
FO8 or F02 routines.

If T has been formed by reduction of a full real symmetric matrix A to tridiagonal form, then
eigenvectors of T may be transformed to eigenvectors of A by a call to FOS8FGF
(SORMTR/DORMTR) or FO8GGF (SOPMTR/DOPMTR).

FOBJJF determines whether the matrix T splits into block diagonal form:
Tl
T,

T

P
and passes details of the block structure to this routine in the arrays IBLOCK and ISPLIT. This
routine can then take advantage of the block structure by performing inverse iteration on each

block T; separately, which is more efficient than using the whole matrix.

4. References

[1] GOLUB, G.H. and VAN LOAN, CF.
Matrix Computations, §7.6.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

[2] JESSUP, E.R. and IPSEN, I.CF.
Improving the Accuracy of Inverse Iteration.
SIAM J. Sci. Stat. Comput., 13, pp. 550-572, 1992.

5. Parameters

1: N - INTEGER. Input
Onentry: n, the order of the matrix T.
Constraint: N 2 0.
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10:

11:

Page 2

D(*) — real array. Input
Note: the dimension of the array D must be at least max(1,N).
On entry: the diagonal elements of the tridiagonal matrix T.

E(*) — real array. Input
Note: the dimension of the array E must be at least max(1,N-1).
On entry: the off-diagonal elements of the tridiagonal matrix 7.

M — INTEGER. Input
On entry: m, the number of eigenvectors to be returned.
Constraint: 0 < M < N.

W(*) — real array. Input
Note: the dimension of the array W must be at least max(1,N).

On entry: the eigenvalues of the tridiagonal matrix T stored in W(1) to W(m), as returned
by FO8JJF (SSTEBZ/DSTEBZ) with ORDER = 'B'. Eigenvalues associated with the first
sub-matrix must be supplied first, in non-decreasing order; then those associated with the
second sub-matrix, again in non-decreasing order; and so on.

Constraint: if IBLOCK (i) = IBLOCK(i+1), W(i) S W(i+l) fori = 1,2,...m-1.

IBLOCK (*) — INTEGER array. Input
Note: the dimension of the array IBLOCK must be at least max(1,N).

Onentry: the first m elements must contain the sub-matrix indices associated with the
specified eigenvalues, as returned by FO8JJF (SSTEBZ/DSTEBZ) with ORDER = 'B'. If
the eigenvalues were not computed by FO8JJF with ORDER = 'B’, set IBLOCK (i) to 1 for
i=1.2,..m

Constraint: IBLOCK (i) < IBLOCK(i+1) fori = 1,2,...m-1.

ISPLIT (*) — INTEGER array. Input
Note: the dimension of the array ISPLIT must be at least max(1,N).

Onentry: the points at which T breaks up into sub-matrices, as returned by FO8JJF
(SSTEBZ/DSTEBZ) with ORDER = 'B'. If the eigenvalues were not computed by FO8JJF
with ORDER = 'B', set ISPLIT(1) to N.

Z(LDZ,*) — real array. Output
Note: the second dimension of the array Z must be at least max(1,M).

Onexit: the m eigenvectors, stored by columns; the ith column corresponds to the ith
specified eigenvalue, unless INFO > 0 (in which case see Section 6).

LDZ - INTEGER. Input

On entry: the first dimension of the array Z as declared in the (sub)program from which
FO8JKF (SSTEIN/DSTEIN) is called.

Constraint: LDZ 2 max(1,N).

WORK(*) — real array. Workspace
Note: the dimension of the array WORK must be at least max(1,5*N).

IWORK (*) — INTEGER array. Workspace
Note: the dimension of the array IWORK must be at least max(1,N).
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12:  IFAILV(*) — INTEGER array. Output
Note: the dimension of the array IFAILV must be at least max(1,M).

Onexit: if INFO = i > 0, the first i elements of IFAILV contain the indices of any
eigenvectors which have failed to converge. The rest of the first M elements of IFAILV are
set to 0.

13: INFO - INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

If INFO = i, then i eigenvectors (as indicated by the parameter IFAILV above) each failed
to converge in 5 iterations. The current iterate after 5 iterations is stored in the
corresponding column of Z.

7. Accuracy

Each computed eigenvector z; is the exact eigenvector of a nearby matrix A + E;, such that
lE:I = O(e)llAll, where € is the machine precision. Hence the residual is small:

lAz,=A;z;ll = O(&)|All.
However a set of eigenvectors computed by this routine may not be orthogonal to so high a
degree of accuracy as those computed by FOSJEF (SSTEQR/DSTEQR).

8. Further Comments
The complex analogue of this routine is FOSJXF (CSTEIN/ZSTEIN).

9. Example
See the example for FOSFGF (SORMTR/DORMTR).

[NP2478/16) Page 3 (last)






FO08 — Least-squares and Eigenvalue Problems (LAPACK) FO8JSF (CSTEQR/ZSTEQR)

FO8JSF (CSTEQR/ZSTEQR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FO8JSF (CSTEQR/ZSTEQR) computes all the eigenvalues, and optionally all the eigenvectors,
of a complex Hermitian matrix which has been reduced to tridiagonal form.

Specification
SUBROUTINE FO8JSF (COMPZ, N, D, E, Z, LDZ, WORK, INFO)
ENTRY csteqr  (COMPZ, N, D, E, 2, LDZ, WORK, INFO)
INTEGER N, LDZ, INFO
real D(*), E(*), WORK(*)
complex Z(LDZ, *)

CHARACTER*1  COMPZ
The ENTRY statement enables the routine to be called by its LAPACK name.

Description
This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real
symmetric tridiagonal matrix 7. In other words, it can compute the spectral factorization of T as
T = ZAZ,
where A is a diagonal matrix whose diagonal elements are the eigenvalues A;, and Z is the
orthogonal matrix whose columns are the eigenvectors z,. Thus
Tz, = Az, fori = 1,2,..,n.

The routine stores the real orthogonal matrix Z in a complex array, so that it may also be used to
compute all the eigenvalues and eigenvectors of a complex Hermitian matrix A which has been
reduced to tridiagonal form T:

A = QTQY, where Q is unitary,
(9Z)A(QZ)".
In this case, the matrix Q must be formed explicitly and passed to FO8JSF, which must be called

with COMPZ = 'V'. The routines which must be called to perform the reduction to tridiagonal
form and form Q are:

full matrix FO8FSF (CHETRD/ZHETRD) + FO8FTF (CUNGTR/ZUNGTR)
full matrix, packed storage F08GSF (CHPTRD/ZHPTRD) + FO8GTF (CUPGTR/ZUPGTR)
band matrix FOSHSF (CHBTRD/ZHBTRD) with VECT = 'V,

FO8JSF uses the implicitly shifted QR algorithm, switching between the QR and QL variants in
order to handle graded matrices effectively (see Greenbaum and Dongarra [2]). The
eigenvectors are normalized so that ||z;||, = 1, but are determined only to within a complex
factor of absolute value 1.

If only the eigenvalues of T are required, it is more efficient to call FOSJFF (SSTERF/DSTERF)
instead. If T is positive-definite, small eigenvalues can be computed more accurately by FOSJUF
(CPTEQR/ZPTEQR).

References

[1] GOLUB, G.H. and VAN LOAN, C/F.
Matrix Computations, §8.2.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

[2] GREENBAUM, A. and DONGARRA, J.J.
Experiments with QR/QL Methods for the Symmetric Tridiagonal Eigenproblem.
LAPACK Working Note No. 17 (Technical Report CS-89-92), University of Tennessee,
Knoxville, 1989.
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[31 PARLETT, B.N.
The Symmetric Eigenvalue Problem, §8.
Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

5. Parameters
1: COMPZ — CHARACTER*1. Input
On entry: indicates whether the eigenvectors are to be computed as follows:

if COMPZ = 'N', then only the eigenvalues are computed (and the array Z is not
referenced);

if COMPZ = 'T, then the eigenvalues and eigenvectors of T are computed (and the
array Z is initialized by the routine);

if COMPZ = 'V', then the eigenvalues and eigenvectors of A are computed (and the
array Z must contain the matrix Q on entry).

Constraint: COMPZ = 'N', T or 'V

2: N - INTEGER. Input
On entry: n, the order of the matrix T.
Constraint: N 2 0.

3:  D(*) — real array. Input/ Output
Note: the dimension of the array D must be at least max(1,N).
On entry: the diagonal elements of the tridiagonal matrix T.

On exit: the n eigenvalues in ascending order, unless INFO > 0 (in which case see Section
6).

4. E(*) - real array. Input/ Output
Note: the dimension of the array E must be at least max(1,N-1).
On entry: the off-diagonal elements of the tridiagonal matrix T.
On exit: the array is overwritten.

5: Z(LDZ,*) — complex array. Input/ Output

Note: the second dimension of the array Z must be at least max(1,N) if COMPZ = 'V' or
T, and at least 1 if COMPZ = 'N'.

Onentry: if COMPZ = 'V', Z must contain the unitary matrix Q from the reduction to
tridiagonal form. If COMPZ = T, Z need not be set.

On exit: if COMPZ = 'T or 'V, the n required orthonormal eigenvectors stored by columns;
the ith column corresponds to the ith eigenvalue, where i = 1,2,...,n, unless INFO > 0.

Z is not referenced if COMPZ = 'N'.

6 LDZ - INTEGER. Input

On entry: the first dimension of the array Z as declared in the (sub)program from which
FO8JSF (CSTEQR/ZSTEQR) is called.

Constraints: LDZ 2 1 if COMPZ = 'N/,
LDZ 2 max(1,N) if COMPZ = V'or T.

7:  WORK(*) — real array. Workspace

Note: the dimension of the array WORK must be at least max(1,2*(N-1)) if
COMPZ = V'or T, and at least 1 if COMPZ = 'N".

WORK is not referenced if COMPZ = 'N'.
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8:

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

The algorithm has failed to find all the eigenvalues after a total of 30xN iterations. In this
case, D and E contain on exit the diagonal and off-diagonal elements, respectively, of a
tridiagonal matrix orthogonally similar to T. If INFO = i, then i off-diagonal elements have
not converged to zero.

Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix T + E, where
IEN, = O(&)ITl,,

and ¢ is the machine precision.

If A, is an exact eigenvalue and i,. is the corresponding computed value, then
144 < c(m)elll,,

where c(n) is a modestly increasing function of .

If z; is the corresponding exact eigenvector, and z; is the corresponding computed eigenvector,
then the angle 6(z;,z;) between them is bounded as follows:

) c(n) |,
6(2;,2,-) < m.
)

Thus the accuracy of a computed eigenvector depends on the gap between its eigenvalue and all
the other eigenvalues.

Further Comments

The total number of real floating-point operations is typically about 24n? if COMPZ = 'N' and
about 14n® if COMPZ = 'V' or T, but depends on how rapidly the algorithm converges. When
COMPZ = 'N', the operations are all performed in scalar mode; the additional operations to
compute the eigenvectors when COMPZ = 'V' or 'T' can be vectorized and on some machines
may be performed much faster.

The real analogue of this routine is FOS8JEF (SSTEQR/DSTEQR).

Example

See the examples for FOSFTF (CUNGTR/ZUNGTR), FO8GTF (CUPGTR/ZUPGTR) or
FO8HSF (CHBTRD/ZHBTRD), which illustrate the use of this routine to compute the
eigenvalues and eigenvectors of a full or band Hermitian matrix.
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FO8JUF (CPTEQR/ZPTEQR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FO8JUF (CPTEQR/ZPTEQR) computes all the eigenvalues, and optionally all the eigenvectors,
of a complex Hermitian positive-definite matrix which has been reduced to tridiagonal form.

Specification
SUBROUTINE FO8JUF (COMPZ, N, D, E, Z, LDZ, WORK, INFO)
ENTRY cpteqr (COMPZ, N, D, E, Z, LDZ, WORK, INFO)
INTEGER N, LDZ, INFO
real D(*), E(*), WORK(*)
complex Z(LDZ, *)

CHARACTER*1  COMPZ
The ENTRY statement enables the routine to be called by its LAPACK name.

Description
This routine computes all the eigenvalues, and optionally all the eigenvectors, of a real
symmetric positive-definite tridiagonal matrix T. In other words, it can compute the spectral
factorization of T as

T = ZAZT,
where A is a diagonal matrix whose diagonal elements are the eigenvalues A, and Z is the
orthogonal matrix whose columns are the eigenvectors z,. Thus

Tz, = Az, fori = 1,2,...n.

The routine stores the real orthogonal matrix Z in a complex array, so that it may be used to
compute all the eigenvalues and eigenvectors of a complex Hermitian positive-definite matrix A
which has been reduced to tridiagonal form T:

A = QTQ", where Q is unitary
= (Q2)A(QZ)".
In this case, the matrix Q must be formed explicitly and passed to FOSJUF, which is called with

COMPZ = 'V'. The routines which must be called to perform the reduction to tridiagonal form
and form Q are:

full matrix FO8FSF (CHETRD/ZHETRD) + FOS8FTF (CUNGTR/ZUNGTR)
full matrix, packed storage FO8GSF (CHPTRD/ZHPTRD) + FO8GTF (CUPGTR/ZUPGTR)
band matrix FO8HSF (CHBTRD/ZHBTRD) with VECT = 'V

The routine first factorizes T as LDLY where L is unit lower bidiagonal and D is diagonal. It
forms the bidiagonal matrix B = LD!, and then calls FOSMSF (CBDSQR/ZBDSQR) to
compute the singular values of B which are the same as the eigenvalues of 7. The method used
by the routine allows high relative accuracy to be achieved in the small eigenvalues of T. The
eigenvectors are normalized so that |iz;]l, = 1, but are determined only to within a complex
factor of absolute value 1.

References

(1] BARLOW, J. and DEMMEL, J.
Computing Accurate Eigensystems of Scaled Diagonally Dominant Matrices.
SIAM J. Num. Anal., 27, pp. 762-791, 1990.
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5. Parameters
1: COMPZ — CHARACTER*1. Input
On entry: indicates whether the eigenvectors are to be computed as follows:

if COMPZ = 'N, then only the eigenvalues are computed (and the array Z is not
referenced);

if COMPZ = T, then the eigenvalues and eigenvectors of T are computed (and the
array Z is initialized by the routine);

if COMPZ = 'V', then the eigenvalues and eigenvectors of A are computed (and the
array Z must contain the matrix Q on entry).

Constraint: COMPZ = 'N', T or 'V'.

2: N - INTEGER. Input
On entry: n, the order of the matrix T.
Constraint: N 2 0.

3:  D(*) — real array. Input/ Output
Note: the dimension of the array D must be at least max(1,N).
On entry: the diagonal elements of the tridiagonal matrix T.

On exit: the n eigenvalues in descending order, unless INFO > 0, in which case the array is
overwritten.

4:  E(*) — real array. Input/ Output
Note: the dimension of the array E must be at least max(1,N-1).
On entry: the off-diagonal elements of the tridiagonal matrix T.
On exit: the array is overwritten.

5:  Z(LDZ,*) — complex array. Input/ Output

Note: the second dimension of the array Z must be at least max(1,N) if COMPZ = V' or
T, and at least 1 if COMPZ = 'N'.

Onentry: if COMPZ = 'V', Z must contain the unitary matrix Q from the reduction to
tridiagonal form. If COMPZ = T, Z need not be set.

On exit: if COMPZ = 'T or 'V, the n required orthonormal eigenvectors stored by columns;
the ith column corresponds to the ith eigenvalue, where i = 1,2,...,n, unless INFO > 0.

Z is not referenced if COMPZ = 'N.

6: LDZ - INTEGER. Input

On entry: the first dimension of the array Z as declared in the (sub)program from which
FO8JUF (CPTEQR/ZPTEQR) is called.

Constraints: LDZ 2 1 if COMPZ = 'N',
LDZ 2> max(1,N) if COMPZ = 'V'or T.

7:  WORK(*) — real array. Workspace

Note: the dimension of the array WORK must be at least max(1,4%*(N-1)) if
COMPZ = 'V'or T, and at least 1 if COMPZ = 'N'.

WORK is not referenced if COMPZ = 'N'.

8: INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).
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6.

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

If INFO = i, the leading minor of order i is mot positive-definite and the Cholesky
factorization of T could not be completed. Hence T itself is not positive-definite.

If INFO = N + i, the algorithm to compute the singular values of the Cholesky factor B
failed to converge; i off-diagonal elements did not converge to zero.

Accuracy
The eigenvalues and eigenvectors of T are computed to high relative accuracy which means that
if they vary widely in magnitude, then any small eigenvalues (and corresponding eigenvectors)
will be computed more accurately than, for example, with the standard QR method. However, the
reduction to tridiagonal form (prior to calling the routine) may exclude the possibility of
obtaining high relative accuracy in the small eigenvalues of the original matrix if its eigenvalues
vary widely in magnitude.
To be more precise, let H be the tridiagonal matrix defined by H = DTD, where D is diagonal
withd,; = ¢}, and h,; = 1forall i. If A; is an exact eigenvalue of T and 4, is the corresponding
computed value, then
1Ai~Ail S c(n)ex, (H) A,
where c(n) is a modestly increasing function of n, € is the machine precision, and x, (H) is the
condition number of H with respect to inversion defined by: x, (H) = |H].|H).
If z; is the corresponding exact eigenvector of T, and 7 ; is the corresponding computed
eigenvector, then the angle 6(z;,z;) between them is bounded as follows:
n)ex,(H
6( f‘_ ’zi) < i_)-l(_z
relgap,

where relgap, is the relative gap between A; and the other eigenvalues, defined by
I}V;—ljl

relgap; = min——L-

inj (;Li'*')'j) )

Further Comments

The total number of real floating-point operations is typically about 30n? if COMPZ = 'N' and
about 12n* if COMPZ = 'V' or T, but depends on how rapidly the algorithm converges. When
COMPZ = 'N', the operations are all performed in scalar mode; the additional operations to
compute the eigenvectors when COMPZ = 'V' or T can be vectorized and on some machines
may be performed much faster.

The real analogue of this routine is FOS8JGF (SPTEQR/DPTEQR).

Example

To compute all the eigenvalues and eigenvectors of the complex Hermitian positive-definite
matrix A, where

6.02 + 0.00i —0.45 + 0.25/ -1.30 + 1.74i 1.45 — 0.66i
-045 - 0.25;i 291 + 0.00i 0.05 + 1.56i —1.04 + 1.27i
-1.30 - 1.74i  0.05 - 1.56i 3.29 + 0.00i 0.14 + 1.70i |’

145 + 0.66i -1.04 — 1.27i 0.14 — 1.70i 4.18 + 0.00i

A=
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9.1. Program Text

Page 4

Note: the listing of the example program
the Users’ Note for your implementation to check the interpretation of these te

manual, the results produced may not be identical for all implementations.

*
*
*

*

*

FO8JUF Example Program Text
Mark 16 Release. NAG Copyright 1992.

FO08 — Least-squares and Eigenvalue Problems (LAPACK)

presented below uses bold italicised terms to denote precision-dependent details. Please read
rms. As explained in the Essential Introduction to this

.. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN=5, NOUT=6)

INTEGER NMAX, LDA, LWORK, LDZ

PARAMETER (NMAX=8, LDA=NMAX, LWORK=64*NMAX, LDZ=NMAX)
.. Local Scalars ..

INTEGER I, IFAIL, INFO, J, N

CHARACTER UPLO

.. Local Arrays ..

complex A(LDA,NMAX), TAU(NMAX), WORK(LWORK), Z(LDZ, NMAX)
real D(NMAX), E(NMAX), RWORK(4*NMAX-4)
CHARACTER CLABS(1), RLABS(1)

.. External Subroutines ..

EXTERNAL FO6TFF, X04DBF, chetrd, cpteqr, cungtr

.. Executable Statements ..

WRITE (NOUT,*) ‘F08JUF Example Program Results’
Skip heading in data file

READ (NIN,*)

READ (NIN,*) N

IF (N.LE.NMAX) THEN

Read A from data file
READ (NIN,*) UPLO
IF (UPLO.EQ.’U’) THEN

READ (NIN,*) ((A(I,J),Jd=I,N),I=1,N)
ELSE IF (UPLO.EQ.’L’) THEN

READ (NIN,=*) ((A(I,J),J=1,I),I=1,N)
END IF
Reduce A to tridiagonal form T = (Q**H)*A*xQ
CALL cheﬂﬂ(UPLO,N,A,LDA,D,E,TAU,WORK,LWORK,INFO)
Copy A into Z
CALL FO6TFF(UPLO,N,N,A,LDA,Z,LD2)
Form Q explicitly, storing the result in 2
CALL cungﬂ(UPLO,N,Z,LDZ,TAU,WORK,LWORK,INFO)
Calculate all the eigenvalues and eigenvectors of A
CALL cptegr(’Vv’,N,D,E,2,LDZ, RWORK, INFO)
WRITE (NOUT, *)
IF (INFO.GT.O0) THEN

WRITE (NOUT,*) ‘Failure to converge.’
ELSE

Print eigenvalues and eigenvectors

WRITE (NOUT,*) ’‘Eigenvalues’

WRITE (NOUT,99999) (D(I),I=1,N)

WRITE (NOUT, *)
IFAIL = 0

CALL XO04DBF(’General’,’ ’,N,N,Zz,LDZ,’Bracketed’,'F7.4’,
’Eigenvectors',’Integer’,RLABS,’Integer',CLABS,

80,0, IFAIL)

[NP2478116)



FO08 — Least-squares and Eigenvalue Problems (LAPACK) FO8JUF (CPTEQR/ZPTEQR)

END IF
END IF
STOP
*
99999 FORMAT (8X,4(F7.4,11X,:))
END

9.2. Program Data

FO8JUF Example Program Data
4 :Value of N

'L’ :Value of UPLO

( 6.02, 0.00)

(-0.45,-0.25) ( 2.91, 0.00)

(-1.30,-1.74) ( 0.05,-1.56) ( 3.29, 0.00)

(1.45, 0.66) (-1.04,-1.27) ( 0.14,-1.70) ( 4.18, 0.00) :End of matrix A

9.3. Program Results
FO8JUF Example Program Results

Eigenvalues
7.9995 5.9976 2.0003 0.4026

Eigenvectors

1 2 3 4
( 0.7289, 0.0000) ( 0.2001, 0.4724) (-0.2133, 0.1498) ( 0.0995,-0.3573)
(-0.1651,-0.2067) (-0.2461, 0.3742) ( 0.7308, 0.0000) ( 0.2867,-0.3364)
(-0.4170,-0.1413) ( 0.4476, 0.1455) (-0.3282, 0.0471) ( 0.6890, 0.0000)
( 0.1748, 0.4175) ( 0.5610, 0.0000) ( 0.5203, 0.1317) ( 0.0659, 0.4336)

LN S
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FO8JXF (CSTEIN/ZSTEIN) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

FO8JXF (CSTEIN/ZSTEIN) computes the eigenvectors of a real symmetric tridiagonal matrix
corresponding to specified eigenvalues, by inverse iteration, storing the eigenvectors in a
complex array.

2. Specification
SUBROUTINE FO8JXF (N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,

1 IFAILV, INFO)

ENTRY cstein (N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK,
1 IFAILV, INFO)

INTEGER N, M, IBLOCK(*), ISPLIT(*), LDZ, IWORK(*), IFAILV(*),
1 INFO

real D(*), E(*), W(*), WORK(*)

complex Z(LDZ, *)

The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine computes the eigenvectors of a real symmetric tridiagonal matrix T corresponding to
specified eigenvalues, by inverse iteration (see Jessup and Ipsen [2]). It is designed to be used in
particular after the specified eigenvalues have been computed by FO8JJF (SSTEBZ/DSTEBZ)
with ORDER = 'B, but may also be used when the eigenvalues have been computed by other
F08 or F02 routines.

The eigenvectors of T are real, but are stored by this routine in a complex array. If T has been
formed by reduction of a full complex Hermitian matrix A to tridiagonal form, then eigenvectors
of T may be transformed to (complex) eigenvectors of A, by a call to FOSFUF
(CUNMTR/ZUNMTR) or FOBGUF (CUPMTR/ZUPMTR).

FO8JJF determines whether the matrix T splits into block diagonal form:
Tl
L

T

P
and passes details of the block structure to this routine in the arrays IBLOCK and ISPLIT. This
routine can then take advantage of the block structure by performing inverse iteration on each

block T; separately, which is more efficient than using the whole matrix.

4. References

[1] GOLUB, G.H. and VAN LOAN, C.F.

Matrix Computations, §7.6.

Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.
[2] JESSUP, E.R. and IPSEN, I.C.F.

Improving the Accuracy of Inverse Iteration.

SIAM J. Sci. Stat. Comput., 13, pp. 550-572, 1992.
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5. Parameters

1: N - INTEGER. Input
On entry: n, the order of the matrix T.
Constraint: N 2 0.

2:  D(*) — real array. Input
Note: the dimension of the array D must be at least max(1,N).
On entry: the diagonal elements of the tridiagonal matrix T.

3:  E(*) — real array. Input
Note: the dimension of the array E must be at least max(1,N-1).
On entry: the off-diagonal elements of the tridiagonal matrix T.

4: M - INTEGER. Input
On entry: m, the number of eigenvectors to be returned.
Constraint: 0 < M < N.

5:  W(*) — real array. Input
Note: the dimension of the array W must be at least max (1,N).

On entry: the eigenvalues of the tridiagonal matrix T stored in W(1) to W(m), as returned
by FO8JJF (SSTEBZ/DSTEBZ) with ORDER = 'B'. Eigenvalues associated with the first
sub-matrix must be supplied first, in non-decreasing order; then those associated with the
second sub-matrix, again in non-decreasing order; and so on.

Constraint: if IBLOCK (i) = IBLOCK (i+1), W(i) S W(i+l) fori = 1,2,...m-1.

6: IBLOCK(*) — INTEGER array. Input
Note: the dimension of the array IBLOCK must be at least max(1,N).

Onentry: the first m elements must contain the sub-matrix indices associated with the
specified eigenvalues, as returned by FOBJJF (SSTEBZ/DSTEBZ) with ORDER = 'B'. If
the eigenvalues were not computed by FO8JJF with ORDER = 'B', set IBLOCK (i) to 1 for
i=12,..m

Constraint: IBLOCK (i) < IBLOCK (i+1) fori = 1,2,...,m-1.

7:  ISPLIT(*) — INTEGER array. Input
Note: the dimension of the array ISPLIT must be at least max (1,N).

Onentry: the points at which T breaks up into sub-matrices, as returned by FO8JJF
(SSTEBZ/DSTEBZ) with ORDER = 'B'. If the eigenvalues were not computed by FO8JJF
with ORDER = 'B', set ISPLIT(1) to N.

8: Z(LDZ*) — complex array. Output
Note: the second dimension of the array Z must be at least max(1,M).
Onexit: the m eigenvectors, stored by columns; the ith column corresponds to the ith

specified eigenvalue, unless INFO > 0 (in which case see Section 6).
9: LDZ - INTEGER. Input

On entry: the first dimension of the array Z as declared in the (sub)program from which
FO8JXF (CSTEIN/ZSTEIN) is called.

Constraint: LDZ 2 max(1,N).
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10: WORK(*) — complex array. Workspace

11:

12:

13:

Note: the dimension of the array WORK must be at least max(1,5*%N).

IWORK (*) — INTEGER array. Workspace
Note: the dimension of the array IWORK must be at least max(1,N).

IFAILV (*) — INTEGER array. Output
Note: the dimension of the array IFAILV must be at least max(1,M).

Onexit: if INFO = i > 0, the first i elements of IFAILV contain the indices of any
eigenvectors which have failed to converge. The rest of the first M elements of IFAILV are
set to 0.

INFO — INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

If INFO = i, then i eigenvectors (as indicated by the parameter IFAILV above) each failed
to converge in 5 iterations. The current iterate after 5 iterations is stored in the
corresponding column of Z.

Accuracy

Each computed eigenvector z; is the exact eigenvector of a nearby matrix A + E,, such that
IE:l = O(¢)llAll, where € is the machine precision. Hence the residual is small:

Az, =4z, = O(&)lA|l.
However a set of eigenvectors computed by this routine may not be orthogonal to so high a
degree of accuracy as those computed by FOS8JSF (CSTEQR/ZSTEQR).
Further Comments
The real analogue of this routine is FOSJKF (SSTEIN/DSTEIN).

Example
See the example for FOSFUF (CUNMTR/ZUNMTR).
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FOS8KEF (SGEBRD/DGEBRD) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
FO8KEF (SGEBRD/DGEBRD) reduces a real m by n matrix to bidiagonal form.

2. Specification
SUBROUTINE FO8KEF (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)

ENTRY sgebrd (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)
INTEGER M, N, LDA, LWORK, INFO
real A(LDA,*), D(*), E(*), TAUQ(*), TAUP(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine reduces a real m by n matrix A to bidiagonal form B by an orthogonal
transformation: A = QBP”, where Q and PT are orthogonal matrices of order m and n
respectively.

If m 2 n, the reduction is given by:
B
A= Q( 0‘)]” = Q,BPT,
where B, is an n by n upper bidiagonal matrix and Q, consists of the first n columns of Q.
If m < n, the reduction is given by
A = Q(B, 0)P" = QB,P],
where B, is an m by m lower bidiagonal matrix and PT consists of the first m rows of P’.

The orthogonal matrices Q and P are not formed explicitly but are represented as products of
elementary reflectors (see the Chapter Introduction for details). Routines are provided to work
with Q and P in this representation. (see Section 8).

4. References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §5.4.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

5. Parameters

1: M - INTEGER. Input
On entry: m, the number of rows of the matrix A.
Constraint: M 2 0.

2: N - INTEGER. Input
On entry: n, the number of columns of the matrix A.
Constraint: N 2 0.

3:  A(LDA,*) - real array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the m by n matrix A.

Onexit: if m 2 n, the diagonal and first super-diagonal are overwritten by the upper
bidiagonal matrix B, elements below the diagonal are overwritten by details of the
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10:

11:

Page 2

orthogonal matrix Q and elements above the first super-diagonal are overwritten by details
of the orthogonal matrix P.

If m < n, the diagonal and first sub-diagonal are overwritten by the lower bidiagonal matrix
B, elements below the first sub-diagonal are overwritten by details of the orthogonal matrix
Q and elements above the diagonal are overwritten by details of the orthogonal matrix P.

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSKEF (SGEBRD/DGEBRD) is called.

Constraint: LDA 2 max(1,M).

D(*) — real array. Output
Note: the dimension of the array D must be at least max (1,min(M,N)).
On exit: the diagonal elements of the bidiagonal matrix B.

E(*) — real array. Output
Note: the dimension of the array E must be at least max(1,min(M,N)-1).
On exit: the off-diagonal elements of the bidiagonal matrix B.

TAUQ(*) — real array. Output
Note: the dimension of the array TAUQ must be at least max(1,min(M,N)).
On exit: further details of the orthogonal matrix Q.

TAUP(*) — real array. Output
Note: the dimension of the array TAUP must be at least max (1,min(M,N)).
On exit: further details of the orthogonal matrix P.

WORK (LWORK) — real array. Workspace

On exit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSKEF (SGEBRD/DGEBRD) is called.

Suggested value: for optimum performance LWORK should be at least (M+N)xnb, where
nb is the blocksize.

Constraint: LWORK 2 max(1,M,N).

INFO — INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.
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9.1.

Accuracy
The computed bidiagonal form B satisfies QBPT = A + E, where
IEN, s c(n)eliAll,,
c(n) is a modestly increasing function of n, and ¢ is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors
in the computation, but this does not affect the stability of the singular values and vectors.

Further Comments
The total number of floating-point operations is approximately $12(3m—n) if m 2 n or
$m*> (3n-m) if m < n.
If m > n, it can be more efficient to first call FOSAEF (SGEQRF/DGEQREF) to perform a QR
factorization of A, and then to call this routine to reduce the factor R to bidiagonal form. This
requires approximately 2n* (m+n) floating-point operations.
If m <« n, it can be more efficient to first call FOSAHF (SGELQF/DGELQF) to perform an LQ
factorization of A, and then to call this routine to reduce the factor L to bidiagonal form. This
requires approximately 2m> (m+n) operations.
To form the orthogonal matrices P” and/or Q, this routine may be followed by calls to FOSKFF
(SORGBR/DORGBR):
to form the m by m orthogonal matrix Q

CALL SORGBR (’Q’,M,M,N,A,LDA, TAUQ, WORK, LWORK, INFO)
but note that the second dimension of the array A must be at least M, which may be larger than
was required by FOSKEF;
to form the n by n orthogonal matrix P”

CALL SORGBR (’P’,N,N,M,A,LDA, TAUP, WORK, LWORK, INFO)
but note that the first dimension of the array A, specified by the parameter LDA, must be at least
N, which may be larger than was required by FOSKEF.

To apply Q or P to a real rectangular matrix C, this routine may be followed by a call to FOSKGF
(SORMBR/DORMBR).

The complex analogue of this routine is FOSKSF (CGEBRD/ZGEBRD).

Example
To reduce the matrix A to bidiagonal form, where

-0.57 -1.28 -0.39 0.25
-193 1.08 -0.31 -2.14
A=1 230 024 040 -035].
-193 0.64 -0.66 0.08
0.15 030 0.15 -2.13
-0.02 1.03 -143 050

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8KEF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LWORK
PARAMETER (MMAX=8, NMAX=8 , LDA=MMAX, LWHORK=64 * (MMAX+NMAX) )
* .. Local Scalars ..
INTEGER I, INFO, J, M, N
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*

+

. Local Arrays

.A(LDA,NMAX), D(NMAX), E(NMAX-1), TAUP(NMAX),

TAUQ(NMAX), WORK(LWORK)
.. External Subroutines
EXTERNAL sgebrd
.. Intrinsic Functions
INTRINSIC MIN

. Executable Statements ..
WRITE (NOUT,*) ’'FO8KEF Example Program Results’
Skip heading in data file
READ (NIN, *)
READ (NIN,*) M, N
IF (M.LE.MMAX .AND. N.LE.NMAX) THEN

Read A from data file

READ (NIN,*) ((A(I,J),J=1,N),I=1,M)

Reduce A to bidiagonal form

CALL mmd"ﬂ(M,N,A,LDA,D,E,TAUQ,TAUP,WORK,LWORK,INFO)
Print bidiagonal form

WRITE (NOUT, *)

WRITE (NOUT,*) ’‘Diagonal’

WRITE (NOUT,99999) (D(I),I=1,MIN(M,N))

IF (M.GE.N) THEN
WRITE (NOUT,*) ’Super-diagonal’

ELSE
WRITE (NOUT,*) ’Sub-diagonal’
END IF
WRITE (NOUT, 99999) (E(I), I=1,MIN(M,N)-1)

END IF
STOP

99999 FORMAT (1X,8F9.4)

END

9.2. Program Data
FOS8KEF Example Program Data

6
-0.
-1.

2.
-1.

0.
-0.

:Values of M and N
.28 -0.39 0.25
.08 -0.31 -2.14
.24 0.40 -0.35
.64 -0.66 0.08
.30 0.15 -2.13
.03 -1.43 0.50 :End of matrix A

HROOOHK

9.3. Program Results
FOSKEF Example Program Results

Diagonal

3.6177 2.4161 -1.9213 -1.4265
Super-diagonal

1.2587 1.5262 -1.1895

Page 4 (last)
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FO8KFF (SORGBR/DORGBR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOS8KFF (SORGBR/DORGBR) generates one of the real orthogonal matrices Q or PT which
were determined by FOSKEF (SGEBRD/DGEBRD) when reducing a real matrix to bidiagonal
form.

Specification
SUBROUTINE FO8KFF (VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
ENTRY sorgbr (VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER M, N, K, LDA, LWORK, INFO
real A(LDA, *), TAU(*), WORK(LWORK)

CHARACTER*1  VECT
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSKEF (SGEBRD/DGEBRD), which reduces
a real rectangular matrix A to bidiagonal form B by an orthogonal transformation: A = QBPT.
FOSKEF represents the matrices Q and P” as products of elementary reflectors.

This routine may be used to generate Q or P” explicitly as square matrices, or in some cases just
the leading columns of Q or the leading rows of P,

The various possibilities are specified by the parameters VECT, M, N and K. The appropriate
values to cover the most likely cases are as follows (assuming that A was an m by n matrix):

1. To form the full m by m matrix Q:
CALL SORGBR ('Q’',m,m,n,...)
(note that the array A must have at least m columns).
2. If m > n, to form the n leading columns of Q:
CALL SORGBR (’Q’,m,n,n,...)
3. To form the full n by n matrix P”:
CALL SORGBR (’P’,n,n,m, ...)
(note that the array A must have at least n rows).
4. If m < n, to form the m leading rows of PT:
CALL SORGBR (’P’,m,n,m,...)

References

[1] GOLUB, G.H. and VAN LOAN, CF.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
VECT - CHARACTER*1. Input
On entry: indicates whether the orthogonal matrix Q or P” is generated as follows:
if VECT = 'Q, then Q is generated,
if VECT = 'P', then P” is generated.
Constraint: VECT = 'Q' or P

[NP2478/16] Page 1



FOSKFF (SORGBR/DORGBR) FO08 - Least-squares and Eigenvalue Problems (LAPACK)

10:

M — INTEGER. Input
On entry: the number of rows of the orthogonal matrix Q or P” to be returned.
Constraint: M 2 0.

N - INTEGER. Input
On entry: the number of columns of the orthogonal matrix Q or PT to be returned.
Constraints: N 2 0.

KEVECT='Q,M2N2KifM > K, or
M=N if M £ K;
P, N2M2KifN > K,or
N=M if N < K.

if VECT

K - INTEGER. Input

On entry: if VECT = 'Q', the number of columns in the original matrix 4; if VECT = P,
the number of rows in the original matrix A.

Constraint: K 2 0.

A(LDA*) — real array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOSKEF (SGEBRD/DGEBRD).

On exit: the orthogonal matrix Q or P”, or the leading rows or columns thereof, as specified
by VECT, M and N.

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSKFF (SORGBR/DORGBR) is called.

Constraint: LDA 2 max(1,M).

TAU(*) — real array. Input

Note: the dimension of the array TAU must be at least max (1,min(MK)) if VECT = 'Q,
and at least max(1,min(N,K)) if VECT = P\

Onentry. further details of the elementary reflectors, as returned by FOS8KEF
(SGEBRD/DGEBRD) in its parameter TAUQ if VECT = 'Q’, or in its parameter TAUP if
VECT = P

WORK (LWORK) — real array. Workspace

Onexit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSKFF (SORGBR/DORGBR) is called.

Suggested value: for optimum performance LWORK should be at least min(M,N)Xxnb,
where nb is the blocksize.

Constraint: LWORK 2 max(1,min(M,N)).

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).
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6.

9.1.

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that
“EIIZ = 0(6) ’

where ¢ is the machine precision. A similar statement holds for the computed matrix P”.

Further Comments

The total number of floating-point operations for the cases listed in Section 3 are approximately
as follows:

1. To form the whole of Q: n(3m?=3mn+n?) if m > n,
m’ifm < n;

2. To form the n leading columns of Q when m > n: 4n?(3m—-n);

3. To form the whole of PT: $n®if m 2 n,

im(3n2=3mn+m?) if m < n;
4. To form the m leading rows of PT whenm < n:  3m?(3n-m).
The complex analogue of this routine is FOSKTF (CUNGBR/ZUNGBR).

Example

For this routine two examples are presented, both of which involve computing the singular value
decomposition of a matrix A, where

-0.57 -1.28 -0.39 0.25
-193 1.08 -0.31 -2.14
A=1] 230 024 040 -035
-193 0.64 -0.66 0.08
0.15 030 0.15 -2.13
-0.02 1.03 -1.43 0.50

in the first example and

-542 328 -3.68 027 206 046
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 235 190 431 -1.76 1.13
-3.15 -0.11 199 -2.70 026 4.50

in the second. A must first be reduced to tridiagonal form by FOSKEF (SGEBRD/DGEBRD).
The program then calls FOBKFF (SORGBR/DORGBR) twice to form Q and P, and passes
these matrices to FOSMEF (SBDSQR/DBDSQR), which computes the singular value
decomposition of A.

A=

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8KFF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LDVT, LDU, LDC, LWORK
PARAMETER (MMAX=8 , NMAX=8, LDA=MMAX, LDVT=NMAX, LDU=MMAX ’
+ LDC=NMAX, LWORK=64* (MMAX+NMAX) )
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.. Local Scalars ..
INTEGER I, IC, IFAIL, INFO, J, M, N
.. Local Arrays ..
real A(LDA,NMAX), C(LDC,NMAX), D(NMAX), E(NMAX-1),
TAUP (NMAX), TAUQ(NMAX), U(LDU,NMAX),
VT(LDVT,NMAX), WORK(LWORK)
.. External Subroutines ..
EXTERNAL sbdsqr, sgebrd, sorgbr, FO6QFF, X04CAF
.. Executable Statements ..
WRITE (NOUT,*) ’'FO8KFF Example Program Results’
Skip heading in data file
READ (NIN, *)
DO 20 IC =1, 2
READ (NIN,*) M, N
IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
Reduce A to bidiagonal form
CALL sgebrd(M,N,A,LDA,D, E, TAUQ, TAUP, WORK, LWORK, INFO)
IF (M.GE.N) THEN
Copy A to VT and U
CALL FO6QFF(’Upper’,N,N,A,LDA,VT,LDVT)
CALL FO6QFF(’Lower’,M,N,A,LDA,U,LDU)
Form P**T explicitly, storing the result in VT
CALL sorghr(’P’ ,N,N,M,VT, LDVT, TAUP, WORK, LWORK, INFO)
Form Q explicitly, storing the result in U
CALL sorgbr(’'Q’ ,M,N,N,U,LDU, TAUQ, WORK, LWORK, INFO)
Compute the SVD of A

CALL shdsgr(’ Upper’,N,N,M,0,D,E, VT, LDVT, U, LDU, C, LDC, WORK,

INFO)

Print singular values, left & right singular vectors

WRITE (NOUT, *)

WRITE (NOUT,*) ’Example 1: singular values’

WRITE (NOUT,99999) (D(I),I=1,N)

WRITE (NOUT, *)

IFAIL = 0

CALL X04CAF(’General’,’ ’',N,N,VT,LDVT,
+ Example 1l: right singular vectors, by row’,
+ IFAIL)

WRITE (NOUT, *)

CALL X04CAF(’General’,’ ’',M,N,U,LDU,
+ 'Example 1: left singular vectors, by column’
+ , IFAIL)

ELSE
Copy A to VT and U
CALL FO6QFF(’Upper’,M,N,A,LDA,VT, LDVT)

CALL FO6QFF(’Lower’,M,M,A,LDA,U,LDU)

[NP2478/16]



F08 — Least-squares and Eigenvalue Problems (LAPACK) FOSKFF (SORGBR/DORGBR)

* Form P**T explicitly, storing the result in VT
CALL soﬂﬂv('P’,M,N,M,VT,LDVT,TAUP,WORK,LWORK,INFO)
* Form Q explicitly, storing the result in U

CALL sorghr(’Q’,M,M,N, U, LDU, TAUQ, WORK, LWORK, INFO)

* Compute the SVD of A
*
CALL sbdsqr('Lower’,M,N,M,0,D,E,VT,LDVT, U, LDU, C, LDC, WORK,
+ INFO)
*
* Print singular values, left & right singular vectors

WRITE (NOUT, *)

WRITE (NOUT,*) ’Example 2: singular values’
WRITE (NOUT,99999) (D(I),I=1,M)

WRITE (NOUT, *)

IFAIL = 0
*
CALL XO04CAF('’General’,’ ’,M,N,VT,LDVT,
+ "Example 2: right singular vectors, by row’,
+ IFAIL)

WRITE (NOUT, *)

CALL XO04CAF(’General’,’ ’,M,M,U,LDU,

+ "Example 2: left singular vectors, by column’
+ , IFAIL)
*
END IF
END IF
20 CONTINUE
STOP

*

99999 FORMAT (3X,(8F8.4))
END

9.2. Program Data

FOS8KFF Example Program Data
6 4 :Values of M and N, Example 1
-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35
-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 =-2.13
-0.02 1.03 -1.43 0.50 :End of matrix A
4 6 :Values of M and N, Example 2
-5.42 3.28 -3.68 0.27 2.06 0.46
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50 :End of matrix A

9.3. Program Results
FOSKFF Example Program Results

Example 1: singular values
3.9987 3.0005 1.9967 0.9999

Example 1: right singular vectors, by row
1 2 3 4

1 0.8251 -0.2794 0.2048 0.4463

2 -0.4530 -0.2121 -0.2622 0.8252

3 -0.2829 -0.7961 0.4952 -0.2026

4 0.1841 -0.4931 -0.8026 —-0.2807



FOSKFF (SORGBR/DORGBR) F08 - Least-squares and Eigenvalue Problems (LAPACK)

Example 1: left singular vectors, by column
1 2 3 4
-0.0203 0.2794 0.4690 0.7692
-0.7284 —-0.3464 -0.0169 -0.0383
0.4393 -0.4955 -0.2868 0.0822
-0.4678 0.3258 -0.1536 —-0.1636
-0.2200 -0.6428 0.1125 0.3572
-0.0935 0.1927 -0.8132 0.4957

A WN K

Example 2: singular values
7.9987 7.0059 5.9952 4.9989

Example 2: right singular vectors, by row

1 2 3 4 5 6
1 -0.7933 0.3163 -0.3342 -0.1514 0.2142 0.3001
2 0.1002 0.6442 0.4371 0.4890 0.3771 0.0501
3 0.0111 0.1724 -0.6367 0.4354 -0.0430 -0.6111
4 0.2361 0.0216 -0.1025 -0.5286 0.7460 -0.3120

Example 2: left singular vectors, by column
, 1 2 3 4

1 0.8884 0.1275 0.4331 0.0838

2 0.0733 -0.8264 0.1943 -0.5234

3 -0.0361 0.5435 0.0756 -0.8352

4 0.4518 -0.0733 -0.8769 —-0.1466
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FO8KGF (SORMBR/DORMBR) - NAG Fortran Library Routine Document

Note: before using this routine, pleasc read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FO8KGF (SORMBR/DORMBR) multiplies an arbitrary real matrix C by one of the real
orthogonal matrices Q or P which were determined by FOSKEF (SGEBRD/DGEBRD) when
reducing a real matrix to bidiagonal form.

Specification

SUBROUTINE FO8KGF (VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

ENTRY sormbr (VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)

INTEGER M, N, K, LDA, LDC, LWORK, INFO

real A(LDA,*), TAU(*), C(LDC, *), WORK (LWORK)

CHARACTER*1  VECT, SIDE, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSKEF (SGEBRD/DGEBRD), which reduces
a real rectangular matrix A to bidiagonal form B by an orthogonal transformation: A = QBP.
FOSKEF represents the matrices Q and P” as products of elementary reflectors.

This routine may be used to form one of the matrix products
QcC, Q'c, €@, €QT, PC, PTC, CP or CPT,
overwriting the result on C (which may be any real rectangular matrix).

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
In the description below, r denotes the order of Q or PT: r = M if SIDE = L' and r = N if
SIDE = R'.
VECT - CHARACTER*1. Input
On entry: indicates whether Q or Q7 or P or P is to be applied to C as follows:
if VECT = 'Q, then Q or Q7 is applied to C;
if VECT = 'P', then P or P is applied to C.
Constraint: VECT = 'Q' or P

SIDE — CHARACTER*1. Input
On entry: indicates how Q or Q7 or P or PT is to be applied to C as follows:
if SIDE = 'L, then Q or Q7 or P or P” is applied to C from the left;
if SIDE = 'R, then Q or Q7 or P or P” is applied to C from the right.
Constraint: SIDE = L' or R'.
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TRANS — CHARACTER*1. Input
On entry: indicates whether Q or P or Q7 or PT is to be applied to C as follows:
if TRANS = 'N', then Q or P is applied to C;
if TRANS = 'T', then Q7 or PT is applied to C.
Constraint: TRANS = 'N' or T.

M - INTEGER. Input
On entry: m, the number of rows of the matrix C.
Constraint: M 2 0.

N — INTEGER. Input
On entry: n, the number of columns of the matrix C.
Constraint: N 2 0.

K — INTEGER. Input

On entry: if VECT = 'Q', the number of columns in the original matrix A; if VECT = P,
the number of rows in the original matrix A.

Constraint: K 2 0.

A(LDA,*) — real array. Input

Note: the second dimension of the array A must be at least max(1,min(rK)) if
VECT = 'Q' and at least max(1,r) if VECT = P".

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOSKEF (SGEBRD/DGEBRD).

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSKGF (SORMBR/DORMBR) is called.

Constraints: LDA 2 max(1,r) if VECT = 'Q,
LDA 2 max(1,min(rK)) if VECT = 'P.

TAU(*) — real array. Input
Note: the dimension of the array TAU must be at least max (1,min(rK)).

Onentry: further details of the elementary reflectors, as returned by FOS8KEF
(SGEBRD/DGEBRD) in its parameter TAUQ if VECT = 'Q’, or in its parameter TAUP if
VECT = P

C(LDC,*) — real array. Input/ Output
Note: the second dimension of the array C must be at least max(1,N).
On entry: the matrix C.

On exit: C is overwritten by QC or QTC or CQ” or CQ or PC or P'C or CP” or CP as
specified by VECT, SIDE and TRANS.

LDC — INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
FOS8KGF (SORMBR/DORMBR) is called.

Constraint: LDC 2 max(1,M).

WORK (LWORK) — real array. Workspace

Onexit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for
optimum performance.
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13: LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSKGF (SORMBR/DORMBR) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb if SIDE = 'L
and at least Mxnb if SIDE = 'R, where nb is the blocksize.

Constraints: ITWORK 2 max(1,N) if SIDE = 'L’,
LWORK 2 max(1,M) if SIDE = R'.

14: INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

7. Accuracy
The computed result differs from the exact result by a matrix E such that
IEI, = O(&)ICI,,

where € is the machine precision.

8. Further Comments

The total number of floating-point operations is approximately
2n k(2mq—k) if SIDE = 'L'and m. 2 &;
2mck(2n.—k) if SIDE = R'and n. 2 k;
2mln if SIDE = 'L'and m, < k;
2mn if SIDE = 'R'and n. < k;

here k is the value of the parameter K.

The complex analogue of this routine is FOSKUF (CUNMBR/ZUNMBR ).

9. Example

For this routine two examples are presented. Both illustrate how the reduction to bidiagonal form
of a matrix A may be preceded by a QR or LQ factorization of A.

In the first example, m > n, and

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -031 -2.14
A=] 230 024 040 -035].
-193 064 -0.66 0.08
0.15 030 0.15 -2.13
-0.02 1.03 -143 050

The routine first performs a QR factorization of A as A = Q_R and then reduces the factor R to
bidiagonal form B: R = Q,BP”. Finally it forms Q, and calls FOSKGF (SORMBR/DORMBR )
to foorm Q = Q,.0,.

In the second example, m < n, and

-5.42 328 -3.68 027 206 046
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-037 235 190 431 -1.76 113}
-3.15 -0.11 199 -2.70 026 4.50

A=
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The routine first performs a LQ factorization of A as A = LPT and then reduces the factor L to
bidiagonal form B: L = QBP/. Finally it forms P] and calls FOBKGF (SORMBR/DORMBR)
to form P = P[P!.

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8KGF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LDPT, LDU, LWORK
PARAMETER (MMAX=8, NMAX=8 , LDA=MMAX, LDPT=NMAX, LDU=MMAX,
+ LWORK=64* (MMAX+NMAX) )
real ZERO
PARAMETER (ZERO=0.0e0)
* .. Local Scalars ..
INTEGER I, IC, IFAIL, INFO, J, M, N
* .. Local Arrays ..
real A(LDA,NMAX), D(NMAX), E(NMAX-1), PT(LDPT, NMAX),
+ TAU(NMAX), TAUP(NMAX), TAUQ(NMAX), U(LDU,NMAX),
+ WORK ( LWORK)
* .. External Subroutines ..
EXTERNAL sgebrd, sgelgf, sgeqrf, sorglg, sorgqr, sormbr,
+ FO6QFF, FO06QHF, XO04CAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8KGF Example Program Results’
* Skip heading in data file

READ (NIN, *)
DO 20 IC =1, 2
READ (NIN,*) M, N
IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
* Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
IF (M.GE.N) THEN
* Compute the QR factorization of A
CALL sgeqrf(M,N, A, LDA, TAU, WORK, LWORK, INFO)
* Copy A to U
CALL FO6QFF(’Lower’,M,N,A,LDA,U,LDU)
* Form Q explicitly, storing the result in U
CALL SOQMW(M,M,N,U,LDU,TAU,WORK,LWORK,INFO)
* Copy R to PT (used as workspace)
CALL FO6QFF(’Upper’,N,N,A,LDA,PT,LDPT)
* Set the strictly lower triangular part of R to zero
CALL FO6QHF (’Lower’,N-1,N-1,ZERO, ZERO,PT(2,1),LDPT)
* Bidiagonalize R
CALL sgebrd(N,N,PT,LDPT,D, E, TAUQ, TAUP, WORK, LWORK, INFO)

* Update Q, storing the result in U
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CALL sormbr(’Q’,’Right’,’No transpose’,M,N,N,PT,LDPT,
+ TAUQ, U, LDU, WORK, LWORK, INFO)

*

Print bidiagonal form and matrix Q

WRITE (NOUT, *)

WRITE (NOUT,*) ’'Example 1: bidiagonal matrix B’
WRITE (NOUT,*) ‘Diagonal’

WRITE (NOUT,99999) (D(I),I=1,N)

WRITE (NOUT,*) ’Super-diagonal’

WRITE (NOUT,99999) (E(I),I=1,N-1)

WRITE (NOUT, *)

IFAIL = O

CALL XO04CAF(’General’,’ ’',M,N,U,LDU,
+ 'Example 1: matrix Q’,IFAIL)

ELSE
* Compute the LQ factorization of A
CALL sgelgf(M,N,A,LDA, TAU, WORK, LWORK, INFO)
* Copy A to PT
CALL FO6QFF(’Upper’,M,N,A,LDA,PT,LDPT)
* Form Q explicitly, storing the result in PT
CALL ﬂ”gh(N,N,M,PT,LDPT,TAU,WORK,LWORK,INFO)
* Copy L to U (used as workspace)
CALL FO6QFF(’Lower’,M,M,A,LDA, U, LDU)
* Set the strictly upper triangular part of L to zero
CALL FO6QHF(’Upper’,M-1,M-1, 2ERO, ZERO,U(1,2),LDU)
* Bidiagonalize L

CALL sgebrd(M,M,U,LDU,D, E, TAUQ, TAUP, WORK, LWORK, INFO)

* Update P**T, storing the result in PT
*
CALL sormbr(’'P’,’Left’,’Transpose’,M,N,M,U,LDU, TAUP,PT,
+ LDPT, WORK, LWORK, INFO)
*
* Print bidiagonal form and matrix P**T

WRITE (NOUT, *)

WRITE (NOUT,*) ’Example 2: bidiagonal matrix B’
WRITE (NOUT,*) ’‘Diagonal’

WRITE (NOUT,99999) (D(I),I=1,M)

WRITE (NOUT, *) ’Super-diagonal’

WRITE (NOUT, 99999) (E(I),I=1,M-1)

WRITE (NOUT, *)

IFAIL = 0
*
CALL XO04CAF(’General’,’ ’,M,N,PT,LDPT,
+ "Example 2: matrix P*xT’, IFAIL)
*
END IF
END IF
20 CONTINUE
STOP

*

99999 FORMAT (3X,(8F8.4))
END
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9.2. Program Data

FO8KGF Example Program Data
6 4 :Values of M and N, Example 1

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35
-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13
-0.02 1.03 -1.43 0.50 :End of matrix A
4 6 :Values of M and N, Example 2
-5.42 .28 -3.68 0.27 2.06 0.46

3
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50 :End of matrix A

9.3. Program Results
FO8KGF Example Program Results

Example 1: bidiagonal matrix B
Diagonal

3.6177 -2.4161 1.9213 -1.4265
Super-diagonal

1.2587 -1.5262 1.1895

Example 1: matrix Q
1 2 3 4
-0.1576 -0.2690 0.2612 0.8513
-0.5335 0.5311 -0.2922 0.0184
0.6358 0.3495 -0.0250 -0.0210
-0.5335 0.0035 0.1537 -0.2592
0.0415 0.5572 -0.2917 0.4523
-0.0055 0.4614 0.8585 -0.0532

audwhKE

Example 2: bidiagonal matrix B
Diagonal
-7.7724 6.1573 -6.0576 5.7933
Super-diagonal
1.1926 0.5734 -1.9143

Example 2: matrix P*xT

1 2 3 4 5 6
1 -0.7104 0.4299 -0.4824 0.0354 0.2700 0.0603
2 0.3583 0.1382 -0.4110 0.4044 0.0951 -0.7148
3 -0.0507 0.4244 0.3795 0.7402 -0.2773 0.2203
4 0.2442 0.4016 0.4158 -0.1354 0.7666 -0.0137
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FOSKSF (CGEBRD/ZGEBRD) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
FOSKSF (CGEBRD/ZGEBRD) reduces a complex m by n matrix to bidiagonal form.
Specification
SUBROUTINE FO8KSF (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)
ENTRY cgebrd (M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO)
INTEGER M, N, LDA, LWORK, INFO
real D(*), E(*)
complex A(LDA, *), TAUQ(*), TAUP(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine reduces a complex m by n matrix A to real bidiagonal form B by a unitary
transformation: A = QBP*, where Q and P¥ are unitary matrices of order m and n respectively.

If m 2 n, the reduction is given by:
B
A= Q(O‘)P” = Q,B,P¥,
where B, is a real n by n upper bidiagonal matrix and Q, consists of the first n columns of Q.
If m < n, the reduction is given by
A = Q(B, 0)P¥ = QB, Py,
where B, is a real m by m lower bidiagonal matrix and P¥ consists of the first m rows of P,

The unitary matrices Q and P are not formed explicitly but are represented as products of
elementary reflectors (see the Chapter Introduction for details). Routines are provided to work
with Q and P in this representation. (see Section 8).

References

[1] GOLUB, G.H. and VAN LOAN, CF.
Matrix Computations, §5.4.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters

M - INTEGER. Input
On entry: m, the number of rows of the matrix A.
Constraint: M 2 0.

N — INTEGER. Input
On entry: n, the number of columns of the matrix A.
Constraint: N 2 0.

A(LDA,*) — complex array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the m by n matrix A.

Onexit: if m 2 n, the diagonal and first super-diagonal are overwritten by the upper
bidiagonal matrix B, elements below the diagonal are overwritten by details of the unitary
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11:

Page 2

matrix Q and elements above the first super-diagonal are overwritten by details of the
unitary matrix P.

If m < n, the diagonal and first sub-diagonal are overwritten by the lower bidiagonal matrix
B, elements below the first sub-diagonal are overwritten by details of the unitary matrix Q
and elements above the diagonal are overwritten by details of the unitary matrix P.

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FO8KSF (CGEBRD/ZGEBRD) is called.

Constraint: LDA 2 max(1,M).

D(*) — real array. Output
Note: the dimension of the array D must be at least max (1,min(M,N)).
On exit: the diagonal elements of the bidiagonal matrix B.

E(*) — real array. Output
Note: the dimension of the array E must be at least max(1,min(M,N)-1 ).
On exit: the off-diagonal elements of the bidiagonal matrix B.

TAUQ(*) — complex array. Output
Note: the dimension of the array TAUQ must be at least max (1,min(M,N ».
On exit: further details of the unitary matrix Q.

TAUP(*) — complex array. Output
Note: the dimension of the array TAUP must be at least max (1,min(M,N)).
On exit: further details of the unitary matrix P.

WORK (LWORK) — complex array. Workspace

Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FO8KSF (CGEBRD/ZGEBRD) is called.

Suggested value: for optimum performance LWORK should be at least (M+N)xnb, where
nb is the blocksize.

Constraint: LWORK 2 max(1,M,N).

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.
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7. Accuracy
The computed bidiagonal form B satisfies QBPY = A + E, where
IEN, < c(n)ellAll,,
c(n) is a modestly increasing function of n, and € is the machine precision.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors
in the computation, but this does not affect the stability of the singular values and vectors.

8. Further Comments

The total number of real floating-point operations is approximately 16n%(3m-n)/3if m 2 n or
16m?(3n-m)/3 if m < n.
If m > n, it can be more efficient to first call FOBASF (CGEQRF/ZGEQRF) to perform a OR
factorization of A, and then to call this routine to reduce the factor R to bidiagonal form. This
requires approximately 8n* (m+n) floating-point operations.
If m < n, it can be more efficient to first call FOSAVF (CGELQF/ZGELQF) to perform an LQ
factorization of A, and then to call this routine to reduce the factor L to bidiagonal form. This
requires approximately 8m? (m+n) operations.
To form the unitary matrices P? and/or Q, this routine may be followed by calls to FOBKTF
(CUNGBR/ZUNGBR):
to form the m by m unitary matrix Q

CALL CUNGBR (’Q’,M,M,N,A,LDA, TAUQ, WORK, LWORK, INFO)
but note that the second dimension of the array A must be at least M, which may be larger than
was required by FOS8KSF;
to form the 7 by n unitary matrix P¥

CALL CUNGBR (’P’,N,N,M,A,LDA, TAUP, WORK, LWORK, INFO)
but note that the first dimension of the array A, specified by the parameter LDA, must be at least
N, which may be larger than was required by FOSKSF.

To apply Q or P to a complex rectangular matrix C, this routine may be followed by a call to
FOSKUF (CUNMBR/ZUNMBR).

The real analogue of this routine is FOSKEF (SGEBRD/DGEBRD).

9. Example
To reduce the matrix A to bidiagonal form, where

0.96 — 0.81i —0.03 + 0.96i —0.91 + 2.06i -0.05 + 0.41i
-098 + 1.98i —-1.20 + 0.19i —-0.66 + 0.42i -0.81 + 0.56i
0.62 — 046i 1.01 + 0.02i 0.63 - 0.17i —-1.11 + 0.60i |.
-037 + 038i 0.19 - 0.54i -0.98 — 0.36i 0.22 — 0.20i
0.83 + 0.51i 020 + 0.01i —-0.17 — 0.46i 1.47 + 1.59i
1.08 — 0.28i 020 - 0.12i -0.07 + 1.23i 0.26 + 0.26i

A

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8KSF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LWORK
PARAMETER (MMAX=8, NMAX=8, LDA=MMAX, LWORK=64 * (MMAX+NMAX) )
* .. Local Scalars ..
INTEGER I, INFO, J, M, N
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9.2.

. Local Arrays ..
A(LDA,NMAX), TAUP(NMAX), TAUQ(NMAX), WORK ( LNORK)

FO08 — Least-squares and Eigenvalue Problems (LAPACK)

complex
real D(NMAX), E(NMAX-1)
* .. External Subroutines ..
EXTERNAL cgebrd
* .. Intrinsic Functions ..
INTRINSIC MIN

. Executable Statements ..

WRITE (NOUT,*) ’'FO8KSF Example Program Results’
* Skip heading in data file

READ (NIN, *)

READ (NIN,*) M, N

IF (M.LE.MMAX .AND. N.LE.NMAX) THEN

Read A from data file

READ (NIN,*) ((A(I,J),J=1,N),I=1,M)

Reduce A to bidiagonal form

CALL cgebrd(M,N,A,LDA,D,E, TAUQ, TAUP, WORK, LWORK, INFO)

Print bidiagonal form

WRITE (NOUT, )
WRITE (NOUT, *)

'Diagonal’

WRITE (NOUT,99999) (D(I),I=1,MIN(M,N))
IF (M.GE.N) THEN

WRITE (NOUT, *)

’ Super-diagonal’

.05,
.81,
.11,

ELSE
WRITE (NOUT,*) ‘Sub-diagonal’
END IF
WRITE (NOUT,99999) (E(I),I=1,MIN(M,N)-1)
END IF
STOP
*
99999 FORMAT (1X,8F9.4)
END
Program Data
FO8KSF Example Program Data
6 4
( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42)
( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17)
(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36)
( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46)
(1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23)
9.3. Program Results
FO8KSF Example Program Results
Diagonal
-3.0870 2.0660 1.8731 2.0022
Super-diagonal
2.1126 1.2628 -1.6126

0.41)
0.56)
0.60)

:Values of M and N

tEnd of matrix A

Page 4 (last)
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FOSKTF (CUNGBR/ZUNGBR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold ialicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FOSKTF (CUNGBR/ZUNGBR) generates one of the complex unitary matrices Q or PH which
were determined by FOSKSF (CGEBRD/ZGEBRD) when reducing a complex matrix to
bidiagonal form.

Specification
SUBROUTINE FO8KTF (VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
ENTRY cungbr (VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER M, N, K, LDA, LWORK, INFO
complex A(LDA, *), TAU(*), WORK(LWORK)

CHARACTER*1  VECT
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSKSF (CGEBRD/ZGEBRD), which reduces
a complex rectangular matrix A to real bidiagonal form B by a unitary transformation:
A = QBP". FOSKSF represents the matrices Q and P¥ as products of elementary reflectors.

This routine may be used to generate Q or P¥ explicitly as square matrices, or in some cases just
the leading columns of Q or the leading rows of P¥.

The various possibilities are specified by the parameters VECT, M, N and K. The appropriate
values to cover the most likely cases are as follows (assuming that A was an m by n matrix):

1. To form the full m by m matrix Q:
CALL CUNGBR ('Q’" ,m,m,n,...)
(note that the array A must have at least m columns).
2. f m > n, to form the n leading columns of Q:
CALL CUNGBR (’Q’,m,n,n,...)
3. To form the full # by n matrix P¥:
CALL CUNGBR (’P’,n,n,m,...)
(note that the array A must have at least n rows).
4. If m < n, to form the m leading rows of P¥:
CALL CUNGBR (’P’,m,n,m,...)

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
VECT — CHARACTER*1. Input
On entry: indicates whether the unitary matrix Q or P* is generated as follows:
if VECT = 'Q/, then Q is generated;
if VECT = 'P', then P¥ is generated.
Constraint: VECT = 'Q' or P'.
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M - INTEGER. Input
On entry: the number of rows of the unitary matrix Q or P¥ to be returned.
Constraint: M 2 0.

N — INTEGER. Input
On entry: the number of columns of the unitary matrix Q or P? to be returned.

Constraints: N 2 0.
If VECT = 'Q,

ERE
AV A &<
ANV AV
RARR

g 38

2 K
if VECT 2 K

]
X
ZZ %%

vy
Z2zz
=N

K — INTEGER. Input

Onentry. if VECT = 'Q', the number of columns in the original matrix A; if VECT = 'P,
the number of rows in the original matrix A.

Constraint: K 2 0.

A(LDA,*) — complex array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FO8KSF (CGEBRD/ZGEBRD).

On exit: the unitary matrix Q or P¥, or the leading rows or columns thereof, as specified by
VECT, M and N.

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FO8KTF (CUNGBR/ZUNGBR) is called.

Constraint: LDA 2 max(1,M).

TAU(*) — complex array. Input

Note: the dimension of the array TAU must be at least max(1,min(M,K)) if VECT = 'Q,
and at least max(1,min(N,K)) if VECT = P

Onentry. further details of the elementary reflectors, as returned by FO8KSF
(CGEBRD/ZGEBRD) in its parameter TAUQ if VECT = 'Q, or in its parameter TAUP if
VECT = 'P.

WORK (LWORK) — complex array. Workspace

Onexit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOS8KTF (CUNGBR/ZUNGBR) is called.

Suggested value: for optimum performance LWORK should be at least min(M,N)xnb,
where nb is the blocksize.

Constraint: LWORK 2 max(1,min(M,N)).

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).
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6. Error Indicators and Warnings

INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

7. Accuracy
The computed matrix Q differs from an exactly unitary matrix by a matrix E such that
IEN, = O(e),
where € is the machine precision. A similar statement holds for the computed matrix PY.

8. Further Comments

The total number of real floating-point operations for the cases listed in Section 3 are
approximately as follows:

1. To form the whole of Q: 16n(3m>-3mn+n?)/3 if m > n,
3
16m ifm £ n;
3
2. To form the n leading columns of Q when m > n: $n*(3m-n);
16n°

3. To form the whole of P¥: ifm 2 n,

3
16m(3n2-3mn+m*)/3 if m < n;

4. To form the m leading rows of P¥ when m < n:  §m*(3n—m).
The real analogue of this routine is FOSKFF (SORGBR/DORGBR).

9. Example

For this routine two examples are presented, both of which involve computing the singular value
decomposition of a matrix A, where
0.96 — 0.81i -0.03 + 0.96i -0.91 + 2.06i —-0.05 + 0.41i
-098 + 1.98i —1.20 + 0.19/ -0.66 + 0.42i —0.81 + 0.56i
062 — 046/ 1.01 + 0.02i 0.63 - 0.17i -1.11 + 0.60i
-037 + 038i 0.19 - 0.54i -098 — 036/ 0.22 - 0.20i
0.83 + 0.51i 0.20 + 0.01i -0.17 — 0.46i 1.47 + 1.59i
1.08 - 0.28; 0.20 - 0.12i -0.07 + 1.23i 0.26 + 0.26i

in the first example and
( 0.28 — 0.36i 0.50 — 0.86i —-0.77 — 0.48i 1.58 + 0.66i)
A=

A

]

-0.50 - 1.10i -1.21 + 0.76i -0.32 — 0.24i -0.27 — 1.15i
0.36 — 0.51i -0.07 + 1.33i -0.75 + 0.47i —-0.08 + 1.01i
in the second. A must first be reduced to tridiagonal form by FOSKSF (CGEBRD/ZGEBRD).
The program then calls FOSKTF (CUNGBR/ZUNGBR) twice to form Q and PH, and passes
these matrices to FOS8MSF (CBDSQR/ZBDSQR), which computes the singular value
decomposition of A.
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9.1. Program Text

Page 4

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

FO8SKTF Example Program Text
Mark 16 Release. NAG Copyright 1992,

.. Parameters

INTEGER NIN, NOUT

PARAMETER (NIN=5, NOUT=6)

INTEGER MMAX, NMAX, LDA, LDVT, LDU, LDC, LWORK
PARAMETER (MMAX=8, NMAX=8 , LDA=MMAX, LDVT=NMAX, LDU=MMAX,
+ LDC=NMAX, LWORK=64* (MMAX+NMAX) )

.. Local Scalars ..

INTEGER I, IC, IFAIL, INFO, J, M, N

.. Local Arrays ..

cmnpkx A(LDA,NMAX), C(LDC,NMAX), TAUP(NMAX), TAUQ(NMAX) ,
+ U(LDU,NMAX), VT(LDVT,NMAX), WORK(LWORK)

real D(NMAX), E(NMAX-1l), RWORK(4*NMAX-4)
CHARACTER CLABS(1), RLABS(1)

.. External Subroutines ..

EXTERNAL FO6TFF, X04DBF, cbdsqr, cgebrd, cungbr

.. Executable Statements ..
WRITE (NOUT,*) ’FO8KTF Example Program Results’
Skip heading in data file
READ (NIN, *)
DO 20 IC =1, 2
READ (NIN,*) M, N
IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,6M)
Reduce A to bidiagonal form
CALL cgebrd(M,N,A,LDA,D,E, TAUQ, TAUP, WORK, LWORK, INFO)
IF (M.GE.N) THEN
Copy A to VT and U
CALL FO6TFF(’Upper’,N,N,A,LDA,VT,LDVT)
CALL FO6TFF(’Lower’,M,N,A,LDA,U,LDU)
Form P**H explicitly, storing the result in VT
CALL cungbr(’'P’,N,N,M, VT, LDVT, TAUP, WORK, LWORK, INFO)
Form Q explicitly, storing the result in U
CALL cungbr(’'Q’,M,N,N,U,LDU, TAUQ, WORK, LWORK, INFO)
Compute the SVD of A

CALL cbhdsqr(’ Upper’,N,N,M,0,D,E,VT,LDVT, U, LDU, C,LDC,
+ RWORK, INFO)

Print singular values, left & right singular vectors

WRITE (NOUT, *)

WRITE (NOUT, *) ’‘Example 1: singular values’
WRITE (NOUT,99999) (D(I),I=1,N)

WRITE (NOUT, *)

IFAIL = 0
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CALL X04DBF(’General’,’ ’,N,N,VT,LDVT,’'Bracketed’,’F7.4’',

+ 'Example 1: right singular vectors, by row’,
+ ’Integer’,RLABS,’ Integer’, CLABS, 80,0, IFAIL)
*
WRITE (NOUT, *)
*
CALL X04DBF(’General’,’ ’',M,N,U,LDU,'Bracketed’,’'F7.4',
+ ’'Example 1: left singular vectors, by column’
+ ;" Integer’ ,RLABS, ' Integer’ ,CLABS, 80,0, IFAIL)
*
ELSE
*
* Copy A to VT and U
*
CALL FO6TFF(’Upper’,M,N,A,LDA,VT, LDVT)
*
CALL FO6TFF(’Lower’,M,M,A,LDA,U,LDU)
*
* Form P**H explicitly, storing the result in VT
*
CALL cungbr('P',M,N,M,VT,LDVT,TAUP,WORK,LWORK,INFO)
*
* Form Q explicitly, storing the result in U
*
CALL cungbr(’'Q’ ,M,M,N, U, LDU, TAUQ, WORK, LWORK, INFO)
*
* Compute the SVD of A
*
CALL cbdsgr(’ Lower’ ,M,N,M,0,D,E,VT,LDVT,U,LDU,C,LDC,
+ RWORK, INFO)
*
* Print singular values, left & right singular vectors
*
WRITE (NOUT, *)
WRITE (NOUT,*) ’Example 2: singular values’
WRITE (NOUT,99999) (D(I),I=1,M)
WRITE (NOUT, *)
IFAIL = 0
*
CALL X04DBF('’General’,’ ’',M,N,VT,LDVT,’'Bracketed’,’F7.4',
+ 'Example 2: right singular vectors, by row’,
+ ’ Integer’ ,RLABS, ' Integer’,CLABS, 80,0, IFAIL)
*
WRITE (NOUT, *)
*
CALL X04DBF(’General’,’ ' ,M,M,U,LDU, ' Bracketed’,’'F7.4’,
+ 'Example 2: left singular vectors, by column’
+ ;' Integer’ ,RLABS,’Integer’,CLABS, 80,0, IFAIL)
*
END IF
END IF

20 CONTINUE

STOP
*

99999 FORMAT (8X,4(F7.4,11X%,:))

END

9.2. Program Data

FO8KTF Example
6 4
( 0.96,-0.81)
(-0.98, 1.98)
( 0.62,-0.46)
(-0.37, 0.38)
( 0.83, 0.51)
( 1.08,-0.28)
3 4

( 0.28,-0.36)

(-0.50,-1.10)

( 0.36,-0.51)

[NP2478/16)

Program Data

:Values of M and N, Example
(-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)
( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)
( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)
( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix
:Values of M and N, Example
( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)
(-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
(-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix

Page 5
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9.3. Program Results
FO8KTF Example Program Results

FO8 — Least-squares and Eigenvalue Problems (LAPACK)

Example 1l: singular values

3.9994

3.0003

1.9944

Example 1: right singular vectors, by row

1
2
3
4

( 0.5123,

3

(-0.6971, 0.0000) (-0.0867,-0.3548) ( 0.0560,-0.5400)
( 0.2403, 0.0000) ( 0.0725,-0.2336) (-0.2477,-0.5291)

( 0.4403,

0.0000) ( 0.3030, 0.1735) (-0.0678,-0.5162)
0.0000) (-0.5294,-0.6361) ( 0.3027,

0.0346)

Example 1: left singular vectors, by column

oUW ER

1
(-0.5634, 0.0016)
( 0.1205,-0.6108)
(-0.0816, 0.1613)
( 0.1441,-0.1532)
(-0.2487,-0.0926)
(-0.3758, 0.0793)

2
(-0.2687,-0.2749)
(-0.2909, 0.1085)
(-0.1660, 0.3885)
( 0.1984,-0.1737)
( 0.6253, 0.3304)
(-0.0307,-0.0816)

Example 2: singular values

3.0004

1.9967

3
(-0.2451,-0.4657)
(-0.4329, 0.1758)
( 0.4667,-0.3821)
( 0.0034,-0.1555)
(-0.2643, 0.0194)
(-0.1266,-0.1747)

0.9973

Example 2: right singular vectors, by row

1 2
1 ( 0.2454,-0.0001) ( 0.2942,-0.5843)

2
3

Example 2: left singular

1
2
3

(-0.1692, 0.5194)
(-0.5553, 0.1403)

1
( 0.6518, 0.0000)
(-0.4437,-0.5027)
(-0.2012, 0.2916)

( 0.1915,-0.4374)
( 0.1438,-0.1507)

vectors,
2
(-0.4312, 0.0000)

(-0.3794, 0.1026)
(-0.8122, 0.0030)

3
( 0.0162,-0.0810)
( 0.5205,-0.0244)
(-0.5684,-0.5505)

by column

3
( 0.6239, 0.0000)
( 0.2014, 0.5961)
(-0.3511,-0.3026)

0.9995

4
(-0.1878,-0.2253)
( 0.7026, 0.2177)
(-0.4418,-0.3864)
(-0.1667,-0.0258)

4
(-0.3787,-0.2987)
( 0.0182, 0.0437)
( 0.0800, 0.2276)
(-0.2608, 0.5382)
(-0.1002,-0.0140)
( 0.

4175, 0.4058)

4
( 0.6794, 0.2083)
(-0.3149,-0.3208)
(-0.0318,-0.0378)

Page 6 (last)
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FOSKUF (CUNMBR/ZUNMBR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOSKUF (CUNMBR/ZUNMBR) multiplies an arbitrary complex matrix C by one of the
complex unitary matrices Q or P which were determined by FOSKSF (CGEBRD/ZGEBRD)
when reducing a complex matrix to bidiagonal form.

Specification
SUBROUTINE FO8KUF (VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)
ENTRY cunmbr (VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
1 LWORK, INFO)
INTEGER M, N, K, LDA, LDC, LWORK, INFO
complex A(LDA,*), TAU(*), C(LDC, *), WORK(LWORK)

CHARACTER*1  VECT, SIDE, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a call to FOSKSF (CGEBRD/ZGEBRD), which reduces
a complex rectangular matrix A to real bidiagonal form B by a unitary transformation:
A = QBP" FOSKSF represents the matrices Q and P” as products of elementary reflectors.

This routine may be used to form one of the matrix products
Qc, @¥c, cQ, cg”, pc, PYC, CP or CP¥,
overwriting the result on C (which may be any complex rectangular matrix).

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
In the description below, r denotes the order of Q or P¥: r = M if SIDE = 'L' and r = N if
SIDE = R'.
VECT - CHARACTER*1. Input
On entry: indicates whether Q or Q¥ or P or P is to be applied to C as follows:
if VECT = 'Q, then Q or Q¥ is applied to C;
if VECT = 'P', then P or P¥ is applied to C.
Constraint:. VECT = 'Q' or P

SIDE — CHARACTER*1. Input
On entry: indicates how Q or Q¥ or P or P¥ is to be applied to C as follows:
if SIDE = 'L', then Q or Q¥ or P or P¥ is applied to C from the left;
if SIDE = 'R, then Q or Q¥ or P or P¥ is applied to C from the right.
Constraint: SIDE = L' or R'.

[NP2478116) Page 1
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10:

11:

12:

Page 2

TRANS — CHARACTER*1. Input
On entry: indicates whether Q or P or Q¥ or P¥ is to be applied to C as follows:
if TRANS = 'N', then Q or P is applied to C;
if TRANS = 'C', then Q¥ or P¥ is applied to C.
Constraint: TRANS = 'N' or 'C.

M — INTEGER. Input
On entry: m, the number of rows of the matrix C.
Constraint: M 2 0.

N - INTEGER. Input
Onentry: n, the number of columns of the matrix C.
Constraint: N 2 0.

K - INTEGER. Input

Onentry: if VECT = 'Q', the number of columns in the original matrix A; if VECT = 'P',
the number of rows in the original matrix A.

Constraint: K 2 0.

A(LDA,*) — complex array. Input

Note: the second dimension of the array A must be at least max(1,min(rK)) if
VECT = 'Q' and at least max(1,r) if VECT = P'.

Onentry. details of the vectors which define the elementary reflectors, as returned by
FO8KSF (CGEBRD/ZGEBRD).

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSKUF (CUNMBR/ZUNMBR) is called.

Constraints: LDA 2 max(1,r) if VECT = 'Q,
LDA 2 max(1,min(r,K)) if VECT = 'P.

TAU(*) — complex array. Input
Note: the dimension of the array TAU must be at least max (1,min(r,K)).

Onentry. further details of the elementary reflectors, as retuned by FOSKSF
(CGEBRD/ZGEBRD) in its parameter TAUQ if VECT = 'Q/, or in its parameter TAUP if
VECT = P

C(LDC,*) — complex array. Input/ Output
Note: the second dimension of the array C must be at least max (1,N).

On entry: the matrix C.

On exit: C is overwritten by QC or QC or CQ¥ or CQ or PC or P#C or CP¥ or CP as
specified by VECT, SIDE and TRANS.

LDC - INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
FO8KUF (CUNMBR/ZUNMBR) is called.

Constraint: LDC 2 max(1,M).

WORK (LWORK) — complex array. Workspace

Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

[NP2478/16)
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13: LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOS8KUF (CUNMBR/ZUNMBR) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb if SIDE = 'L’
and at least Mxnb if SIDE = 'R', where nb is the blocksize.

Constraints: LWORK 2 max(1,N) if SIDE = 'L,
LWORK 2 max(1,M) if SIDE = R'.
14: INFO — INTEGER. Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

7. Accuracy
The computed result differs from the exact result by a matrix E such that
IEI, = O(&)ICI,,
where ¢ is the machine precision.

8. Further Comments

The total number of real floating-point operations is approximately
8nck(2mo—k) if SIDE = L' and m, 2 k;
8mck(2n.—k) if SIDE = R'and n, 2 k;
8mZn. if SIDE = 'L' and m, < k;
8m n’ if SIDE = R and n, < k;

here k is the value of the parameter K.

The real analogue of this routine is FOSKGF (SORMBR/DORMBR).

9. Example
For this routine two examples are presented. Both illustrate how the reduction to bidiagonal form
of a matrix A may be preceded by a QR or LQ factorization of A.
In the first example, m > n, and
0.96 — 0.81i —0.03 + 0.96i —0.91 + 2.06i -0.05 + 0.41i
-098 + 1.98i -1.20 + 0.19i -0.66 + 0.42i -0.81 + 0.56i
0.62 — 046i 1.01 + 0.02i 0.63 - 0.17i —-1.11 + 0.60i |.
-037 + 0.38; 0.19 — 0.54i -098 - 0.36;i 0.22 — 0.20i
0.83 + 0.51i 0.20 + 0.01i -0.17 — 0.46i 1.47 + 1.59i
1.08 — 0.28; 0.20 - 0.12i -0.07 + 1.23i 0.26 + 0.26i
The routine first performs a QR factorization of A as A = Q_R and then reduces the factor R to
bidiagonal form B: R = Q,BP". Finally it forms Q, and calls FOSKUF (CUNMBR/ZUNMBR )
tofoom Q = Q.0,.

In the second example, m < n, and
( 0.28 - 0.36i 0.50 — 0.86i —0.77 — 0.48i 1.58 + 0.661’)
A= .

A

-0.50 - 1.10i -1.21 + 0.76i -0.32 — 0.24i —-0.27 — 1.15{
0.36 — 0.51i -0.07 + 1.33i -0.75 + 0.47i —-0.08 + 1.01i

The routine first performs a LQ factorization of A as A = LPY and then reduces the factor L to
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9.1.

Page 4

bidiagonal form B: L = QBP;’. Finally it forms P,f' and calls FOSKUF (CUNMBR/ZUNMBR )
to form P¥ = P/PY,

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8KUF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER MMAX, NMAX, LDA, LDPH, LDU, LWORK
PARAMETER (MMAX=8, NMAX=8, LDA=MMAX, LDPH=NMAX, LDU=MMAX,
+ LWORK=64* (MMAX+NMAX) )
complex ZERO
PARAMETER (ZERO=(0.0e0,0.0e0))
* .. Local Scalars ..
INTEGER I, IC, IFAIL, INFO, J, M, N
* .. Local Arrays ..
complex A(LDA,NMAX), PH(LDPH,NMAX), TAU(NMAX),
+ TAUP (NMAX), TAUQ(NMAX), U(LDU,NMAX), WORK(LWORK)
real D(NMAX), E(NMAX-1)
CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines ..
EXTERNAL FO6TFF, FO6THF, XO04DBF, cgebrd, cgelgf, cgeqrf,
+ cunglg, cungqr, cunmbr
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8KUF Example Program Results’
* Skip heading in data file

READ (NIN, *)
DO 20 IC =1, 2
READ (NIN,*) M, N
IF (M.LE.MMAX .AND. N.LE.NMAX) THEN
* Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,M)
IF (M.GE.N) THEN
* Compute the QR factorization of A
CALL cgeqrf(M,N,A, LDA, TAU, WORK, LWORK, INFO)
* Copy A to U
CALL FO6TFF(’Lower’,M,N,A,LDA,U,LDU)
* Form Q explicitly, storing the result in U
CALL cungqr(M,M,N,U,LDU, TAU, WORK, LWORK, INFO)
* Copy R to PH (used as workspace)
CALL FO6TFF(’Upper’,N,N,A,LDA, PH, LDPH)
* Set the strictly lower triangular part of R to zero
CALL FO6THF(’Lower’, N-1,N-1,ZERO, ZERO,PH(2,1), LDPH)
* Bidiagonalize R
CALL cgdhﬂ(N,N,PH,LDPH,D,E,TAUQ,TAUP,WORK,LWORK,INFO)

* Update Q, storing the result in U

CALL cunmbr(’Q’,’Right’,’No transpose’ ,M,N,N, PH, LDPH,
+ TAUQ, U, LDU, WORK, LWORK, INFO)
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*

Print bidiagonal form and matrix Q

WRITE (NOUT, *)

WRITE (NOUT,*) ’Example 1: bidiagonal matrix B’
WRITE (NOUT,*) ’'Diagonal’

WRITE (NOUT,99999) (D(I),I=1,N)

WRITE (NOUT, *) ’'Super-diagonal’

WRITE (NOUT,99999) (E(I),I=1,N-1)

WRITE (NOUT, *)

IFAIL = 0
*
CALL X04DBF(’General’,’ ’',M,N,U,LDU,’Bracketed’,’'F7.4’,
+ 'Example 1: matrix Q’,’Integer’, RLABS,
+ ’Integer’,CLABS, 80,0, IFAIL)
*
ELSE
*
* Compute the LQ factorization of A

CALL cgelgf(M,N, A, LDA, TAU, WORK, LWORK, INFO)
* Copy A to PH
CALL FO6TFF(’Upper’,M,N,A,LDA,PH, LDPH)
* Form Q explicitly, storing the result in PH
CALL cunglg(N,N,M, PH, LDPH, TAU, WORK, LWORK, INFO)
* Copy L to U (used as workspace)
CALL FO6TFF(’Lower’,M,M,A,LDA,U,LDU)
* Set the strictly upper triangular part of L to zero
CALL FO6THF('’Upper’,M-1,M-1, 2ERO, Z2ERO,U(1,2),LDU)
* Bidiagonalize L

CALL cgebrd(M,M,U,LDU, D, E, TAUQ, TAUP, WORK, LWORK, INFO)

* Update P**H, storing the result in PH
*
CALL cummbr(’'P’,’Left’,’Conjugate transpose’,M,N,M,U,LDU,
+ TAUP, PH, LDPH, WORK, LWORK, INFO)
*
* Print bidiagonal form and matrix P**H

WRITE (NOUT, *)

WRITE (NOUT,*) ’'Example 2: bidiagonal matrix B’
WRITE (NOUT,*) ’‘Diagonal’

WRITE (NOUT,99999) (D(I),I=1,M)

WRITE (NOUT,*) ’Super-diagonal’

WRITE (NOUT,99999) (E(I),I=1,M-1)

WRITE (NOUT, *)

IFAIL = 0
*
CALL XO04DBF(’General’,’ ’,M,N,PH,LDPH,’'Bracketed’,’'F7.4’',
+ 'Example 2: matrix P**H’,’Integer’,RLABS,
+ ’Integer’ ,CLABS, 80,0, IFAIL)
*
END IF
END IF
20 CONTINUE
STOP

*

99999 FORMAT (3X, (8F8.4))
END
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9.2. Program Data

FO8KUF Example Program Data
6 4 :Values of M and N, Example 1

( 0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)

(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)

( 0.62,-0.46) ( 1.01, 0.02) ( 0.63,-0.17) (-1.11, 0.60)

(-0.37, 0.38) ( 0.19,-0.54) (-0.98,-0.36) ( 0.22,-0.20)

( 0.83, 0.51) ( 0.20, 0.01) (-0.17,-0.46) ( 1.47, 1.59)

( 1.08,-0.28) ( 0.20,-0.12) (-0.07, 1.23) ( 0.26, 0.26) :End of matrix A
3 4 :Values of M and N, Example 2

( 0.28,-0.36) ( 0.50,-0.86) (-0.77,-0.48) ( 1.58, 0.66)

(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)

( 0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A

9.3. Program Results
FO8KUF Example Program Results

Example 1: bidiagonal matrix B
Diagonal
-3.0870 -2.0660 -1.8731 -2.0022
Super-diagonal
2.1126 -1.2628 1.6126

Example 1l: matrix Q

1 2 3 4
(-0.3110, 0.2624) ( 0.6521, 0.5532) .0427, 0.0361) (-0.2634,-0.0741)
( 0.3175,-0.6414) ( 0.3488, 0.0721) .2287, 0.0069) ( 0.1101,-0.0326)
(-0.2008, 0.1490) (-0.3103, 0.0230) .1855,-0.1817) (-0.2956, 0.5648)
( 0.1199,-0.1231) (-0.0046,-0.0005) .3305, 0.4821) (-0.0675, 0.3464)
(-0.2689,-0.1652) ( 0.1794,-0.0586) .5235,-0.2580) ( 0.3927, 0.1450)
(-0.3499, 0.0907) ( 0.0829,-0.0506) .3202, 0.3038) ( 0.3174, 0.3241)

AU W R
—~ e~~~
[eNoNoNoNoNe)

Example 2: bidiagonal matrix B
Diagonal

2.7615 1.6298 -1.3275
Super-diagonal

-0.9500 -1.0183

Example 2: matrix P**H

1 2 3 4
1 (-0.1258, 0.1618) (-0.2247, 0.3864) .3460, 0.2157) .7099,-0.2966)
2 (0.4148, 0.1795) ( 0.1368,-0.3976) .6885, 0.3386) .1667,-0.0494)
3 ( 0.4575,-0.4807) (-0.2733, 0.4981) .0230, 0.3861) .1730, 0.2395)

P
[oNeNe]
—~ o~ -~
[oNeNo]
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FOSMEF (SBDSQR/DBDSQR) — NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

Warning: the specification for the parameter WORK changed at Mark 17: the length of WORK may
need to be increased if NCVT = NRU = NCC = 0.

1 Purpose

FOSMEF (SBDSQR/DBDSQR) computes the singular value decomposition of a real upper or lower
bidiagonal matrix, or of a real general matrix which has been reduced to bidiagonal form.

2 Specification

SUBROUTINE FOSMEF(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU,

1 c, LDC, WORK, INFO)

ENTRY sbdsqr(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU,
1 Cc, LDC, WORK, INFO)

INTEGER N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO

real D(x), E(x), VT(LDVT,*), U(LDU,x), C(LDC,*),

1 WORK (%)

CHARACTER#*1 UPLO

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine computes the singular values, and optionally, the left or right singular vectors of a real upper
or lower bidiagonal matrix B. In other words, it can compute the singular value decomposition (SVD)
of B as
B=UzvT.
Here ¥ is a diagonal matrix with real diagonal elements o; (the singular values of B), such that
6,20,2...20,2>0;

U is an orthogonal matrix whose columns are the left singular vectors u;; V' is an orthogonal matrix
whose rows are the right singular vectors v;. Thus

_ T, _— ;
Bu; = o,v; and B v; = o;u; for 1=1,2,...,n.

To compute U and/or V7T, the arrays U and/or VT must be initialized to the unit matrix before FOSMEF
is called. .

The routine may also be used to compute the SVD of a real general matrix A which has been reduced
to bidiagonal form by an orthogonal transformation: A=QBPT. If Ais m by n with m > n, then Q is
m by n and PT is n by n; if A is n by p with n < p, then @ is n by n and PT is n by p. In this case,
the matrices Q and/or PT must be formed explicitly by FOSKFF (SORGBR/DORGBR) and passed to
FOSMEF in the arrays U and/or VT respectively.

FOSMEF also has the capability of forming UTC, where C is an arbitrary real matrix; this is needed
when using the SVD to solve linear least-squares problems.

FOSMEF uses two different algorithms. If any singular vectors are required (that is, if NCVT > 0 or
NRU > 0 or NCC > 0), the bidiagonal QR algorithm is used, switching between zero-shift and implicitly
shifted forms to preserve the accuracy of small singular values, and switching between QR and QL
variants in order to handle graded matrices effectively (see Demmel and Kahan [1]). If only singular
values are required (that is, if NCVT = NRU = NCC = 0), they are computed by the differential qd
algorithm (see Fernando and Parlett [2]), which is faster and can achieve even greater accuracy.

The singular vectors are normalized so that || u; || = || v; [| = 1, but are determined only to within a
factor 1.
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4
[1]

(2]

(3]

References

Demmel ] W and Kahan W (1990) Accurate singular values of bidiagonal matrices STAM J. Sci.
Statist. Comput. 11 873-912

Fernando K V and Parlett B N (1994) Accurate singular values and differential qd algorithms
Numer. Math. 67 191-229

Golub G H and Van Loan C F (1989) Matriz Computations Johns Hopkins University Press (2nd
Edition)

Parameters

UPLO — CHARACTER*1 Input

On entry: indicates whether B is an upper or lower bidiagonal matrix as follows:
if UPLO = ’U’, then B is an upper bidiagonal matrix;

if UPLO = ’L’, then B is a lower bidiagonal matrix.
Constraint: UPLO = U’ or 'L’

N — INTEGER Input

On entry: n, the order of the matrix B.

Constraint: N > 0.

NCVT — INTEGER Input

On entry: ncvt, the number of columns of the matrix V7 of right singular vectors. Set NCVT = 0
if no right singular vectors are required.

Constraint: NCVT > 0.

NRU — INTEGER Input

On entry: nru, the number of rows of the matrix U of left singular vectors. Set NRU = 0 if no left
singular vectors are required.

Constraint: NRU > 0.

NCC — INTEGER Input

On entry: nce, the number of columns of the matrix C. Set NCC = 0 if no matrix C' is supplied.

Constraint: NCC > 0.

D(*) — real array Input/OQutput
Note: the dimension of the array D must be at least max(1, N).

On entry: the diagonal elements of the bidiagonal matrix B.

On exit: the singular values in decreasing order of magnitude, unless INFO > 0 (in which case see
Section 6).

E(x) — real array Input/Ouiput
Note: the dimension of the array E must be at least max(1, N — 1).

On entry: the off-diagonal elements of the bidiagonal matrix B.

On ezit: the array is overwritten, but if INFO > 0 see Section 6.

FOSMEF (SBDSQR/DBDSQR).2 [NP2834/17]
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10:

11:

12:

13:

14:

VT(LDVT,*) — real array ' Input/Output
Note: the second dimension of the array VT must be at least max(1, NCVT).

On entry: if NCVT > 0, VT must contain an n by ncvt matrix. If the right singular vectors of B
are required, nevt = n and VT must contain the unit matrix; if the right singular vectors of A are
required, VT must contain the orthogonal matrix P returned by FOSKFF (SORGBR/DORGBR)
with VECT = "P’.

On ezit: the n by ncvt matrix VT or VT PT of right singular vectors, stored by rows. _

VT is not referenced if NCVT = 0.

LDVT — INTEGER Input

On entry: the first dimension of the array VT as declared in the (sub)program from which FOSMEF
(SBDSQR/DBDSQR) is called.

Constraints:

LDVT > max(1,N) if NCVT > 0,
LDVT > 1 otherwise.

U(LDU,x) — real array Input/Output
Note: the second dimension of the array U must be at least max(1,N).

On entry: if NRU > 0, U must contain an nru by n matrix. If the left singular vectors of B are
required, nru = n and U must contain the unit matrix; if the left singular vectors of 4 are required,
U must contain the orthogonal matrix @ returned by FOSKFF (SORGBR/DORGBR) with VECT =
7Q?.

On ezil: the nru by n matrix U or QU of left singular vectors, stored by columns.

U is not referenced if NRU = 0.

LDU — INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which FOSMEF
(SBDSQR/DBDSQR) is called.

Constraint: LDU > max(1, NRU).
C(LDC,*) — real array Input/Output

Note: the second dimension of the array C must be at least max(1, NCC).
On entry: the n by nce matrix C if NCC > 0.

On ezit: C is overwritten by the matrix UTC'.
C is not referenced if NCC = 0.

LDC — INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which FOSMEF
(SBDSQR/DBDSQR) is called.

Constraints:

LDC > max(1,N) if NCC > 0,
LDC > 1 otherwise.

WORK(*) — real array Workspace

Note: the dimension of the array WORK must be at least max(1,2«N)if NCVT = NRU = NCC = 0,
and at least max(1,4 * (N — 1)) otherwise.
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15: INFO — INTEGER Output

On ezit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

The algorithm failed to converge and INFO specifies how many off-diagonals did not converge.
In this case, D and E contain on exit the diagonal and off-diagonal elements, respectively, of a
bidiagonal matrix orthogonally equivalent to B.

7 Accuracy

Each singular value and singular vector is computed to high relative accuracy. However, the reduction
to bidiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative
accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.

If o, is an exact singular value of B and &; is the corresponding computed value, then
|6; — ;| < p(m, n)eo;

where p(m,n) is a modestly increasing function of m and n, and ¢ is the machine precision. If
only singular values are computed, they are computed more accurately (that is, the function p(m,n) is
smaller), than when some singular vectors are also computed.

If u; is the corresponding exact left singular vector of B, and u; is the corresponding computed left
singular vector, then the angle 6(,, u;) between them is bounded as follows:

N p(m,n)e
O(u,, u,) <
(@, ;) relgap;

where relgap; is the relative gap between o; and the other singular values, defined by

b (o +0y)

A similar error bound holds for the right singular vectors.

8 Further Comments

The total number of floating-point operations is roughly proportional to n? if only the singular values are
computed. About 6n? x nru additional operations are required to compute the left singular vectors and
about 6n% x nevt to compute the right singular vectors. The operations to compute the singular values
must all be performed in scalar mode; the additional operations to compute the singular vectors can be
vectorized and on some machines may be performed much faster.

The complex analogue of this routine is FOSMSF (CBDSQR/ZBDSQR).

9 Example

To compute the singular value decomposition of the upper bidiagonal matrix B, where

3.62 1.26  0.00 0.00
0.00 —-241 -153 0.00
0.00  0.00 1.92 1.19
0.00 0.00 0.00 —1.43

See also the example for FOSBKFF, which illustrates the use of the routine to compute the singular value
decomposition of a general matrix.

B =

FO8MEF (SBDSQR/DBDSQR).4 [NP2834/17]
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9.1 Example Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* FOBMEF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, LDVT, LDU, LDC
PARAMETER (NMAX=8,LDVT=NMAX,LDU=NMAX,LDC=1)
real ZERO, ONE
PARAMETER (ZERDO=0.0e0,0NE=1.0e0)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, N
CHARACTER UPLO
* .. Local Arrays ..
real c(LDC,1), D(NMAX), E(NMAX-1), U(LDU,NMAX),
+ VT(LDVT,NMAX), WORK(4*NMAX-4)
* .. External Subroutines ..
EXTERNAL sbdsqr, FO6QHF, X04CAF
* .. Executable Statements ..
WRITE (NOUT,*) ’FOSMEF Example Program Results’
* Skip heading in data file

READ (NIN,*)

READ (NIN,*) N

IF (N.LE.NMAX) THEN
Read B from data file

READ (NIN,#*) (D(I),I=1,N)
READ (NIN,*) (E(I),I=1,N-1)

READ (NIN,*) UPLO
Initialise U and VT to be the unit matrix
CALL FO6QHF(’General’,N,N,ZERO,ONE,U,LDU)
CALL FO6QHF(’General’,N,N,ZERO,ONE,VT,LDVT)
Calculate the SVD of B
CALL sbdsqr(UPLO,N,N,N,O,D,E,VT,LDVT,U,LDU,C,LDC,WORK,INFO)
WRITE (NOUT,*)
IF (INFO.GT.O) THEN
WRITE (NOUT,*) ’Failure to converge.’
ELSE
* Print singular values, left & right singular vectors
WRITE (NOUT,*) ’Singular values’
WRITE (NOUT,99999) (D(I),I=1,N)
WRITE (NOUT,*)
IFAIL = O

CALL X04CAF(’General’,’ ’ ,N,N,VT,LDVT,
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+ "Right singular vectors, by row’,IFAIL)

WRITE (NOUT,*)
IFAIL = 0

CALL XO04CAF(’General’,’ ’,N,N,U,LDU,
+ ’Left singular vectors, by column’,IFAIL)

END IF
END IF
STOP

*

99999 FORMAT (3X, (8F8.4))
END

9.2 Example Data

FOBMEF Example Program Data

4 :Value of N
3.62 -2.41 1.92 -1.43

1.26 -1.53 1.19 :End of matrix B
g :Value of UPLO

9.3 Example Results
FOBMEF Example Program Results

Singular values

4.0001 3.0006 1.9960 0.9998

Right singular vectors, by row
1 2 3

B W N -

Left singular vectors, by column

1 2 3

B W N

FO8MEF (SBDSQR/DBDSQR).6 (last)

4

0.8261 0.5246 0.2024 0.0369
0.4512 -0.4056 -0.7350 -0.3030
0.2823 -0.5644 0.1731 0.7561
0.1852 -0.4916 0.6236 -0.5789

4

0.9129 0.3740 0.1556 0.0512
-0.3935 0.7005 0.5489 0.2307
0.1081 -0.5904 0.6173 0.5086
-0.0132 0.1444 -0.5417 0.8280
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FO8MSF (CBDSQR/ZBDSQR) — NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

Warning: the specification for the parameter WORK changed at Mark 17: the length of WORK may
need to be increased if NCVT = NRU = NCC = 0.

1 Purpose

FO8MSF (CBDSQR/ZBDSQR) computes the singular value decomposition of a complex general matrix
which has been reduced to bidiagonal form.

2 Specification

SUBROUTINE FO8MSF(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU,

1 C, LDC, WORK, INFO)

ENTRY cbdsqr(UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU,
1 C, LDC, WORK, INFO)

INTEGER N, NCVT, NRU, NCC, LDVT, LDU, LDC, INFO

real D(x), E(x), WORK(x)

complex VT(LDVT,*), U(LDU,*), C(LDC,x*)

CHARACTER*1 UPLO

The ENTRY statement enables the routine to be called by its LAPACK name.

3 Description

This routine computes the singular values, and optionally, the left or right singular vectors of a real upper
or lower bidiagonal matrix B. In other words, it can compute the singular value decomposition (SVD)
of B as
B=UusvT.
Here ¥ is a diagonal matrix with real diagonal elements o; (the singular values of B), such that
o, 20,>...20, 20

U is an orthogonal matrix whose columns are the left singular vectors u;; V is an orthogonal matrix
whose rows are the right singular vectors v;. Thus

— T, _ .
Bu; = o;v; and B v; = o;u; fori =1,2,...,n.

To compute U and/or VT, the arrays U and/or VT must be initialized to the unit matrix before FOSMSF
is called.

The routine stores the real orthogonal matrices U and VT in complex arrays U and VT, so that it may
also be used to compute the SVD of a complex general matrix A which has been reduced to bidiagonal
form by a unitary transformation: A = QBPH . If Ais m by n with m > n, then Q is m by n and pH
is n by n; if A is n by p with n < p, then @ is n by n and PH is n by p. In this case, the matrices @
and/or P must be formed explicitly by FOSKTF (CUNGBR/ZUNGBR) and passed to FOSMSF in the
arrays U and/or VT respectively.

FO8MSF also has the capability of forming UHC, where C is an arbitrary complex matrix; this is needed
when using the SVD to solve linear least-squares problems.

FO8MSF uses two different algorithms. If any singular vectors are required (that is, if NCVT > 0 or
NRU > 0 or NCC > 0), the bidiagonal QR algorithm is used, switching between zero-shift and implicitly
shifted forms to preserve the accuracy of small singular values, and switching between QR and QL
variants in order to handle graded matrices effectively (see Demmel and Kahan [1]). If only singular
values are required (that is, if NCVT = NRU = NCC = 0), they are computed by the differential qd
algorithm (see Fernando and Parlett [2]), which is faster and can achieve even greater accuracy.

The singular vectors are normalized so that || w; || = || v; || = 1, but are determined only to within a
complex factor of absolute value 1.
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References
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Parameters

UPLO — CHARACTER*1 Input

On entry: indicates whether B is an upper or lower bidiagonal matrix as follows:
if UPLO =’U’, then B is an upper bidiagonal matrix;

if UPLO ="’L’, then B is a lower bidiagonal matrix.

Constraint: UPLO ="U’ or ’L’.

N — INTEGER Input
On entry: n, the order of the matrix B.

Constraint: N > 0.

NCVT — INTEGER Input

On entry: ncvt, the number of columns of the matrix V¥ of right singular vectors. Set NCVT = 0
if no right singular vectors are required.

Constraint: NCVT > 0.

NRU — INTEGER Input

On entry: nru, the number of rows of the matrix U of left singular vectors. Set NRU = 0 if no left
singular vectors are required.

Constraint: NRU > 0.

NCC — INTEGER Input

On entry: nce, the number of columns of the matrix C'. Set NCC = 0 if no matrix C is supplied.

Constraint: NCC > 0.

D(*) — real array Input/Output
Note: the dimension of the array D must be at least max(1,N).

On entry: the diagonal elements of the bidiagonal matrix B.

On erit: the singular values in decreasing order of magnitude, unless INFO > 0 (in which case see
Section 6).

E(x) — real array Input/Output
Note: the dimension of the array E must be at least max(1, N — 1).

On entry: the off-diagonal elements of the bidiagonal matrix B.

On exit: the array is overwritten, but if INFO > 0 see Section 6.

FOSMSF (CBDSQR/ZBDSQR).2 . [NP2834/17]
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10:

11:

12:

13:

14:

VT(LDVT,*x) — complex array Input/Output
Note: the second dimension of the array VT must be at least max(1, NCVT).

On entry: if NCVT > 0, VT must contain an n by ncvt matrix. If the right singular vectors of
B are required, ncvt = n and VT must contain the unit matrix; if the right singular vectors of A
are required, VT must contain the unitary matrix PH returned by FOSKTF (CUNGBR/ZUNGBR)
with VECT =P’ .

On ezit: the n by ncvt matrix VH or V# PH of right singular vectors, stored by rows.

VT is not referenced if NCVT = 0.

LDVT — INTEGER Input

On entry: the first dimension of the array VT as declared in the (sub)program from which FOSMSF
(CBDSQR/ZBDSQR) is called.

Constraints:

LDVT > max(1,N) if NCVT > 0,
LDVT > 1 otherwise.

U(LDU,*) — complex array Input/Output
Note: the second dimension of the array U must be at least max(1,N).

On entry: if NRU > 0, U must contain an nru by n matrix. If the left singular vectors of B
are required, nru = n and U must contain the unit matrix; if the left singular vectors of A are
required, U must contain the unitary matrix @ returned by FOSKTF (CUNGBR/ZUNGBR) with
VECT ="Q’.

On exit: the nru by n matrix U or QU of left singular vectors, stored by columns.
U is not referenced if NRU = 0.

LDU — INTEGER Input

On entry: the first dimension of the array U as declared in the (sub)program from which FO8MSF
(CBDSQR/ZBDSQR) is called.

Constraint: LDU > max(1, NRU).
C(LDC,*) — complex array Input/Output

Note: the second dimension of the array C must be at least max(1, NCC).
On entry: the n by ncc matrix C if NCC > 0.

On ezit: C is overwritten by the matrix U¥C.
C is not referenced if NCC = 0.

LDC — INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which FOSMSF
(CBDSQR/ZBDSQR) is called.

Constraints:

LDC > max(1, N) if NCC > 0,
LDC > 1 otherwise.

WORK(*) — real array Workspace

Note: the dimension of the array WORK must be at least max(1,2*N)if NCVT = NRU = NCC =0,
and at least max(1,4 * (N — 1)) otherwise.
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15: INFO — INTEGER Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

The algorithm failed to converge and INFO specifies how many off-diagonals did not converge.
In this case, D and E contain on exit the diagonal and off-diagonal elements, respectively, of a
bidiagonal matrix orthogonally equivalent to B.

7 Accuracy

Each singular value and singular vector is computed to high relative accuracy. However, the reduction
to bidiagonal form (prior to calling the routine) may exclude the possibility of obtaining high relative
accuracy in the small singular values of the original matrix if its singular values vary widely in magnitude.

If 0, is an exact singular value of B and &, is the corresponding computed value, then
o, — 03] < p(m, n)eo;

where p(m,n) is a modestly increasing function of m and n, and € is the machine precision. If
only singular values are computed, they are computed more accurately (that is, the function p(m,n) is
smaller), than when some singular vectors are also computed.

If u; is the corresponding exact left singular vector of B, and 4, is the corresponding computed left
singular vector, then the angle 6(4,, u;) between them is bounded as follows:

p(m,n)e

0(u,, u;) <
(@, ;) < relgap;

where relgap, is the relative gap between o, and the other singular values, defined by

oy — Ujl
relgap, = min

2] (Ui +0]»).

A similar error bound holds for the right singular vectors.

8 Further Comments

The total number of real floating-point operations is roughly proportional to n? if only the singular values
are computed. About 12n? x nru additional operations are required to compute the left singular vectors
and about 12n? x nevt to compute the right singular vectors. The operations to compute the singular
values must all be performed in scalar mode; the additional operations to compute the singular vectors
can be vectorized and on some machines may be performed much faster.

The real analogue of this routine is FOSMEF (SBDSQR/DBDSQR).
9 Example

See the example for FOBKTF (CUNGBR/ZUNGBR), which illustrates the use of the routine to compute
the singular value decomposition of a general matrix.
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FO08 - Least-squares and Eigenvalue Problems (LAPACK) FOSNEF (SGEHRD/DGEHRD)

FOSNEF (SGEHRD/DGEHRD) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose
FOSNEF (SGEHRD/DGEHRD) reduces a real general matrix to Hessenberg form.

2. Specification
SUBROUTINE FOSNEF (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

ENTRY sgehrd (N, 11O, IHI, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER N, ILO, IHI, LDA, LWORK, INFO
real A(LDA, *), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description
This routine reduces a real general matrix A to upper Hessenberg form H by an orthogonal
similarity transformation: A = QHQ".

The matrix Q is not formed explicitly, but is represented as a product of elementary reflectors
(see the Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 8).

The routine can take advantage of a previous call to FOSNHF (SGEBAL/DGEBAL), which may
produce a matrix with the structure:

All A12 A13

Ay An

A33
where A,, and A; are upper triangular. If so, only the central diagonal block A,,, in rows and
columns i, to i,;, needs to be reduced to Hessenberg form (the blocks A,, and A,, will also be
affected by the reduction). Therefore the values of i), and i, determined by FOSNHF can be
supplied to the routine directly. If FOSNHF has not previously been called however, then i, must

be setto 1 and i, to n.

4. References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §7.4.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

5. Parameters

I: N - INTEGER. Input
On entry: n, the order of the matrix A.
Constraint: N 2 0.

2: ILO - INTEGER. Input
3: IHI - INTEGER. Input

On entry: if A has been output by FOSNHF (SGEBAL/DGEBAL), then ILO and IHI must
contain the values returned by that routine. Otherwise, ILO must be set to 1 and IHI to N.

Constraints: 1 S ILO < THI £ Nif N > 0,
ILO=1andIHI = 0if N = 0.
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Page 2

A(LDA,*) — real array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the n by n general matrix A.

Onexit: A is overwritten by the upper Hessenberg matrix H and details of the orthogonal
matrix Q.

LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSNEF (SGEHRD/DGEHRD) is called.

Constraint: LDA 2 max(1,N).

TAU(*) — real array. Output
Note: the dimension of the array TAU must be at least max(1,N~1).
On exit: further details of the orthogonal matrix Q.

WORK (LWORK) — real array. Workspace

Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSNEF (SGEHRD/DGEHRD) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb, where nb is
the blocksize.

Constraint: LWORK 2 max(1,N).

INFO - INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy

The computed Hessenberg matrix H is exactly similar to a nearby matrix A + E, where
IE, < c(n)elll,,

c(n) is a modestly increasing function of n, and ¢ is the machine precision.

The elements of H themselves may be sensitive to small perturbations in A or to rounding errors
in the computation, but this does not affect the stability of the eigenvalues, eigenvectors or Schur
factorization,

Further Comments

The total number of floating-point operations is approximately 3g> (2g+3n), where g = i P PN
if i, = 1and i, = n, the number is approximately 10n°/3.

To form the orthogonal matrix Q this routine may be followed by a call to FOSNFF
(SORGHR/DORGHR ):

CALL SORGHR (N, ILO, IHI,A,LDA, TAU, WORK, LWORK, INFOQ)
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To apply Q to an m by n real matrix C this routine may be followed by a call to FOBNGF
(SORMHR/DORMHR). For example,

CALL SORMHR (’Left’,’No Transpose’,M,N,ILO,IHI,A,LDA,TAU,C,LDC,
+ WORK, LWORK, INFO)

forms the matrix product QC.
The complex analogue of this routine is FOSNSF (CGEHRD/ZGEHRD).

9. Example
To compute the upper Hessenberg form of the matrix A, where

035 045 -0.14 -0.17
0.09 0.07 -0.54 0.35
-0.44 -033 -0.03 0.17
0.25 -0.32 -0.13 0.11

A=

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FOSNEF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LWORK
PARAMETER (NMAX=8, LDA=NMAX, LWORK=64*NMAX)
real ZERO
PARAMETER (ZERO=0.0e0)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, N
* .. Local Arrays
real A(LDA,NMAX), TAU(NMAX-1), WORK(LWORK)
* .. External Subroutines
EXTERNAL sgehrd, X04CAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8SNEF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN
* Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,N)
* Reduce A to upper Hessenberg form
CALL sgehrd(N,1,N,A,LDA, TAU, WORK, LWORK, INFO)
* Set the elements below the first sub-diagonal to zero
-2

+ 2, N
ZERO

DO 40 I =1,

DO 20 J =

A(J,I)

20 CONTINUE
40 CONTINUE

nhHZ

*

Print upper Hessenberg form

WRITE (NOUT, *)
IFAIL = 0
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CALL XO04CAF(’General’,’

+

END IF
STOP
END

9.2. Program Data
FOSNEF Example

4

0.35 0.45

0.09 0.07
-0.44 -0.33

0.25 -0.32

9.3. Program Results

IFAIL)

Program Data

-0.14 -0.17
-0.54 0.35
-0.03 0.17
-0.13 0.11

FO08 — Least-squares and Eigenvalue Problems (LAPACK)

:Value of N

:End of matrix A

FOSNEF Example Program Results

Upper Hessenberg form

2 3

4

1 0.3500 -0.1160 -0.3886 -0.2942

2 -0.5140 O.

1225 0.1004

0.1126

3 0.0000 0.6443 -0.1357 -0.0977

4 0.0000 oO.

0000 0.4262

0.1632

’/N,N,A,LDA, 'Upper Hessenberg form’,

Page 4 (last)
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FOSNFF (SORGHR/DORGHR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

FOSNFF (SORGHR/DORGHR) generates the real orthogonal matrix Q which was determined
by FOSNEF (SGEHRD/DGEHRD), when reducing a real general matrix A to Hessenberg form.

2. Specification
SUBROUTINE FOSNFF (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)

ENTRY sorghr (N, 1LO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER N, ILO, IHI, LDA, LWORK, INFO
real A(LDA,*), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine is intended to be used following a call to FOSNEF (SGEHRD/DGEHRD), which
reduces a real general matrix A to upper Hessenberg form H by an orthogonal similarity
transformation: A = QHQT. FOSNEF represents the matrix Q as a product of i, —i,, elementary
reflectors. Here i, and i,; are values determined by FOSNHF (SGEBAL/DGEBAL) when
balancing the matrix; if the matrix has not been balanced, i,, = 1 and i,; = n.

This routine may be used to generate Q explicitly as a square matrix. Q has the structure:
I 0 0
=100, 0
0 0 1
where Q,, occupies rows and columns i, t0 i.

4. References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §7.4.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

5. Parameters

1: N - INTEGER. Input
On entry: n, the order of the matrix Q.
Constraint: N 2 0.

2:  ILO - INTEGER. Input
3: IHI - INTEGER. Input

On entry: these must be the same parameters ILO and IHI, respectively, as supplied to
FOSNEF (SGEHRD/DGEHRD).

Constraints: 1 < ILO < IHI € Nif N > 0,
ILO=1andIHI = 0if N = 0.

4: A(LDA,*) — real array. Input/ Output

Note: the second dimension of the array A must be at least max(1,N).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOSNEF (SGEHRD/DGEHRD).

On exit: the n by n orthogonal matrix Q.
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5:  LDA - INTEGER. Input

Onentry: the first dimension of the array A as declared in the (sub)program from which
FOSNFF (SORGHR/DORGHR) is called.

Constraint: LDA 2 max(1,N).

6: TAU(*) — real array. Input
Note: the dimension of the array TAU must be at least max (1,N-1).

Onentry. further details of the elementary reflectors, as returned by FO8SNEF
(SGEHRD/DGEHRD).

7:  WORK(LWORK) - real array. Workspace

On exit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

8: LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSNFF (SORGHR/DORGHR) is called.

Suggested value: for optimum performance LWORK should be at least (IHI-ILO) xnb,
where nb is the blocksize.

Constraint: LWORK 2 max(1,[HI-ILO).

9: INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

7. Accuracy
The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that
IEl, = O(e),

where ¢ is the machine precision.

8. Further Comments

The total number of floating-point operations is approximately 4g°, where g = i PR P
The complex analogue of this routine is FOSNTF (CUNGHR/ZUNGHR).

9. Example
To compute the Schur factorization of the matrix A, where

035 045 -0.14 -0.17
0.09 0.07 -0.54 035
-0.44 -033 -0.03 0.17}
0.25 -0.32 -0.13 0.11
Here A is genmeral and must first be reduced to Hessenberg form by FOSNEF

(SGEHRD/DGEHRD). The program then calls FOSNFF (SORGHR/DORGHR) to form Q, and
passes this matrix to FOSPEF (SHSEQR/DHSEQR) which computes the Schur factorization of
A,

A=
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

*

* % % % % %

* %

[NP2478116)

FOSNFF Example Program Text
Mark 16 Release. NAG Copyright 1992.

.. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN=5,NOUT=6)

INTEGER NMAX, LDA, LDZ, LWORK

PARAMETER (NMAX=8, LDA=NMAX, LDZ=NMAX, LWORK=64* (NMAX-1) )
.. Local Scalars ..

INTEGER I, IFAIL, INFO, J, N

.. Local Arrays ..

real A(LDA,NMAX), TAU(NMAX), WI(NMAX), WORK(LWORK),
+ WR(NMAX), Z(LDZ,NMAX)

.. External Subroutines ..

EXTERNAL sgehrd, shseqr, sorghr, FO6QFF, X04CAF

.. Executable Statements ..
WRITE (NOUT,*) ’FO8NFF Example Program Results’
Skip heading in data file
READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN
Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,N)
Reduce A to upper Hessenberg form H = (Q**T)*A*xQ
CALL sgehrd(N,1,N,A,LDA, TAU, WORK, LWORK, INFO)
Copy A into 2
CALL FO6QFF(’General’,N,N,A,LDA,Z,LDZ)
Form Q explicitly, storing the result in 2

CALL sorghr(N,1,N,Z,LDZ, TAU, WORK, LWORK, INFO)

Calculate the Schur factorization of H = Y*T*(Y**T) and form
Q*Y explicitly, storing the result in 2

Note that A = Z*xTx(Z**xT), where Z = Q*Y

CALL shseqgr(’Schur form’,’Vectors’,N,1,N,A,LDA,WR,WI,Z2,LD2Z,
+ WORK, LWORK, INFO)

Print Schur form

WRITE (NOUT, *)
IFAIL = 0

CALL XO04CAF('’General’,’ ’',N,N,A,LDA,’'Schur form’,IFAIL)
Print Schur vectors

WRITE (NOUT, *)
IFAIL = 0

CALL XO04CAF('’General’,’ ’',N,N,2,LDZ,’Schur vectors of A’,IFAIL)

END IF
STOP

END
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9.2. Program Data

FOSNFF Example Program Data
4 :Value of N
0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35
-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A

9.3. Program Results
FOSNFF Example Program Results

Schur form

1 2 3 4
0.7995 -0.1144 -0.0060 0.0336
0.0000 -0.0994 -0.2478 0.3474
0.0000 0.6483 -0.0994 -0.2026
0.0000 0.0000 0.0000 -0.1007

S W

Schur vectors of A
1 2 3 4
0.6551 0.1037 -0.3450 0.6641
0.5236 -0.5807 0.6141 -0.1068
-0.5362 -0.3073 0.2935 0.7293
0.0956 0.7467 0.6463 0.1249

W
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FOSNGF (SORMHR/DORMHR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FOSNGF (SORMHR/DORMHR) multiplies an arbitrary real matrix C by the real orthogonal
matrix Q which was determined by FOSNEF (SGEHRD/DGEHRD) when reducing a real
general matrix to Hessenberg form.

Specification
SUBROUTINE FOSNGF (SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC,
1 WORK, LWORK, INFO)
ENTRY sormhr (SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC,
1 WORK, LWORK, INFO)
INTEGER M, N, ILO, IHI, LDA, LDC, LWORK, INFO
real A(LDA, *), TAU(*), C(LDC, *), WORK (LWORK)

CHARACTER*1  SIDE, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used following a call to FOSNEF (SGEHRD/DGEHRD), which
reduces a real general matrix A to upper Hessenberg form H by an orthogonal similarity
transformation: A = QHQ". FOSNEF represents the matrix Q as a product of i,,—i,, elementary
reflectors. Here i,, and i,; are values determined by FOSNHF (SGEBAL/DGEBAL) when
balancing the matrix; if the matrix has not been balanced, i,, = 1 and i,;, = n.

This routine may be used to form one of the matrix products
QC, @"C, CQ or CQ",
overwriting the result on C (which may be any real rectangular matrix).

A common application of this routine is to transform a matrix V of eigenvectors of H to the
matrix QV of eigenvectors of A.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
SIDE — CHARACTER*1. Input
On entry: indicates how Q or Q7 is to be applied to C as follows:
if SIDE = 'L', then Q or Q7 is applied to C from the left;
if SIDE = 'R, then Q or Q7 is applied to C from the right.
Constraint: SIDE = L' or R'.

TRANS — CHARACTER*1. Input
On entry: indicates whether Q or Q7 is to be applied to C as follows:
if TRANS = 'N', then Q is applied to C;
if TRANS = 'T', then Q7 is applied to C.
Constraint: TRANS = 'N' or 'T'.
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3:

4:

W

9:

10:

11:

12:

M - INTEGER. Input
On entry: m, the number of rows of the matrix C; m is also the order of Q if SIDE = L'
Constraint: M 2 0.

N — INTEGER. Input
On entry: n, the number of columns of the matrix C; n is also the order of Q if SIDE = R'.
Constraint: N 2 0.

ILO - INTEGER. Input
IHI — INTEGER. Input

Onentry: these must be the same parameters ILO and IHI, respectively, as supplied to
FOSNEF (SGEHRD/DGEHRD).

Constraints: 1 S ILO < IHI £ Mif SIDE = 'L'and M > 0;
HO=1andIHI = 0if SIDE = L'and M = 0;
1 <ILO<IHI < NifSIDE = R'and N > 0;
IO =1and IHI = 0 if SIDE = R'and N = 0.

A(LDA,*) — real array. Input

Note: the second dimension of the array A must be at least max(1,M) if SIDE = 'L' and at
least max(1,N) if SIDE = R'.

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOSNEF (SGEHRD/DGEHRD).

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOS8NGF (SORMHR/DORMHR) is called.

Constraints: LDA 2 max(1,M) if SIDE = L',
LDA 2 max(1,N) if SIDE = R’

TAU(*) — real array. Input

Note: the dimension of the array TAU must be at least max(1,M-1) if SIDE = L' and at
least max(1,N-1) if SIDE = 'R.

Onentry: further details of the elementary reflectors, as returned by FOSNEF
(SGEHRD/DGEHRD).

C(LDC,*) - real array. Input/ Output
Note: the second dimension of the array C must be at least max(1,N).
On entry: the m by n matrix C.
Onexit: C is overwritten by QC or Q"C or CQ” or CQ as specified by SIDE and TRANS.

LDC - INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
FOSNGF (SORMHR/DORMHR) is called.

Constraint: LDC 2 max(1,M).

WORK (LWORK) - real array. Workspace

Onexit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for
optimum performance.
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13:

14:

9.1.

LWORK - INTEGER. Input

On entry. the dimension of the array WORK as declared in the (sub)program from which
FOSNGF (SORMHR/DORMHR ) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb if SIDE = L'
and at least Mxnb if SIDE = 'R', where nb is the blocksize.

Constraints: LWORK 2 max(1,N) if SIDE = 'L,
LWORK 2 max(1,M) if SIDE = R'.

INFO - INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed result differs from the exact result by a matrix E such that
IEN, = O(&)ICl,,

where ¢ is the machine precision.

Further Comments

The total number of floating-point operations is approximately 2ng’ if SIDE = 'L' and 2mgq? if
SIDE = R', where ¢ = i,;—i,.

The complex analogue of this routine is FOSNUF (CUNMHR/ZUNMHR ).

Example

To compute all the eigenvalues of the matrix A, where

035 045 -0.14 -0.17
0.09 0.07 -0.54 035
-0.44 -033 -0.03 0.17)
0.25 -0.32 -0.13 0.11

and those eigenvectors which correspond to eigenvalues A such that Re(A) < 0. Here A is
general and must first be reduced to upper Hessenberg form H by FOSNEF
(SGEHRD/DGEHRD). The program then calls FOSPEF (SHSEQR/DHSEQR) to compute the
eigenvalues, and FOSPKF (SHSEIN/DHSEIN) to compute the required eigenvectors of H by
inverse iteration. Finally FOSNGF (SORMHR/DORMHR) is called to transform the
eigenvectors of H back to eigenvectors of the original matrix A.

A=

Program Text

Note: the listing of the example program presented below uses bold ifalicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8BNGF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LDH, LDZ, LWORK, LDVL, LDVR
PARAMETER (NMAX=8, LDA=NMAX, LDH=NMAX, LDZ=1, LFORK=64 *NMAX,
+ LDVL=NMAX, LDVR=NMAX )
* .. Local Scalars ..
real THRESH
INTEGER I, IFAIL, INFO, J, M, N
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* .. Local Arrays ..
real A(LDA,NMAX), H(LDH,NMAX), TAU(NMAX),
+ VL(LDVL,NMAX), VR(LDVR,NMAX), WI(NMAX),
+ WORK(LWORK), WR(NMAX), Z(LDZ,1)
INTEGER IFAILL(NMAX), IFAILR(NMAX)
LOGICAL SELECT(NMAX)
* .. External Subroutines ..
EXTERNAL sgehrd, shsein, shseqr, sormhr, FO6QFF, X0A4CAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8NGF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN
* Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,N)
READ (NIN, *) THRESH
* Reduce A to upper Hessenberg form H = (Q**T)*A*xQ
CALL sgehrd(N,1,N,A,LDA, TAU, WORK, LWORK, INFO)
* Copy A to H
CALL FO6QFF(’General’,N,N,A,LDA,H, LDH)
* Calculate the eigenvalues of H (same as A)

CALL shseqr(’Eigenvalues’,’No vectors’,N,1,N,H,LDH,WR,WI,Z,LDZ,
+ WORK, LWORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.0) THEN
WRITE (NOUT,*) ’'Failure to converge.’
ELSE
WRITE (NOUT,*) ‘Eigenvalues’
WRITE (NOUT,99999) ('’ (’,WR(I),’,’,WI(I),")’,I=1,N)

DO 20 I =1, N
SELECT(I) = WR(I) .LT. THRESH

20 CONTINUE
*
* Calculate the eigenvectors of H (as specified by SELECT),
* storing the result in VR
*
CALL shsein(’Right’,’QR’,’No initial vectors’,SELECT,N,A,
+ LDA,WR,WI, VL, LDVL, VR, LDVR, N, M, WORK, IFAILL,
+ IFAILR, INFO)
*
* Calculate the eigenvectors of A = Q * (eigenvectors of H)
*
CALL sormhr(’Left’,’No transpose’,N,M,1,N,A,LDA, TAU,VR,LDVR,
+ WORK, LWORK, INFO)
*
* Print eigenvectors

WRITE (NOUT, *)

IFAIL = 0
*
CALL XO04CAF(’General’,’ ’,N,M,VR,LDVR,
+ 'Contents of array VR’,IFAIL)
*
END IF
END IF
STOP

*
99999 FORMAT (1X,A,F8.4,A,F8.4,3)
END
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9.2. Program Data

FO8BNGF Example Program Data
4 :Value of N
0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35
-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A
0.0 :Value of THRESH

9.3. Program Results
FO8SNGF Example Program Results

Eigenvalues
( 0.7995, 0.0000)
( —0.0994, 0.4008)
( -0.0994, -0.4008)
( -0.1007, 0.0000)

Contents of array VR
1 2 3
0.3881 0.0574 0.1493
-0.7107 0.0380 0.3956
-0.3891 0.0778 0.7075
-0.3996 -0.7270 0.8603

oW
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FOSNHF (SGEBAL/DGEBAL) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOSNHF (SGEBAL/DGEBAL) balances a real general matrix in order to improve the accuracy
of computed eigenvalues and/or eigenvectors.

Specification
SUBROUTINE FO8NHF (JOB, N, A, LDA, ILO, IHI, SCALE, INFO)
ENTRY sgebal (JOB, N, A, LDA, ILO, IHI, SCALE, INFO)
INTEGER N, LDA, ILO, IHI, INFO
real A(LDA, *), SCALE(*)

CHARACTER*1  JOB
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine balances a real general matrix A. The term ‘balancing’ covers two steps, each of
which involves a similarity transformation of A. The routine can perform either or both of these
steps.

1. The routine first attempts to permute A to block upper triangular form by a similarity
transformation:

AL A Al
PAPT = A’=| 0 A, Ay
0 0 Ay

where P is a permutation matrix, and A}, and A}, are upper triangular. Then the diagonal
elements of A}, and Aj;, are eigenvalues of A. The rest of the eigenvalues of A are the
eigenvalues of the central diagonal block A, in rows and columns i,, to i,. Subsequent
operations to compute the eigenvalues of A (or its Schur factorization) need only be applied to
these rows and columns; this can save a significant amount of work if i;,, > 1 andi,;, < n. If no

suitable permutation exists (as is often the case), the routine sets i, = 1and i, = n,and A}, is
the whole of A.

2. The routine applies a diagonal similarity transformation to A’, to make the rows and columns
of A5, as close in norm as possible:

I 0 0\ /A}, A\ AB\/I 0 O
A" =DAD™" = |0 Dy, 0)| 0 Ay Ay l{0 D 0).
0 0 7/J\0 0 Aj/\0 0 1

This scaling can reduce the norm of the matrix (that is, ||A", || < |JA%, ), and hence reduce the
effect of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

References

(1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §7.5.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.
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5. Parameters
1:  JOB — CHARACTER*1. Input
On entry: indicates whether A is to be permuted to and/or scaled (or neither), as follows:

if JOB = 'N, then A is neither permuted nor scaled (but values are assigned to ILO,
IHI and SCALE);

if JOB = 'P', then A is permuted but not scaled;
if JOB = 'S', then A is scaled but not permuted,;
if JOB = 'B, then A is both permuted and scaled.

Constraint: JOB = 'N', 'P', 'S' or 'B".

2: N - INTEGER. Input
On entry: n, the order of the matrix A.
Constraint: N 2 0.

3:  A(LDA,*) — real array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the n by n general matrix A.
On exit: A is overwritten by the balanced matrix.
A is not referenced if JOB = 'N'.

4: LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSNHF (SGEBAL/DGEBAL) is called.

Constraint: LDA 2 max(1,N).

5:  ILO — INTEGER. Output

6: IHI — INTEGER. Output
Oneexit: the values i, and i,; such that on exit A(i,j) is zeroif i > jand 1 < j < i, or
iy <iSn

IfJOB = 'N'or 'S, theni,, = 1and iy, = n.

7:  SCALE(*) — real array. Output
Note: the dimension of the array SCALE must be at least max(1,N).

On exit: details of the permutations and scaling factors applied to A. More precisely, if p; is
the index of the row and column interchanged with row and column j and d; is the scaling
factor used to balance row and column j, then

pj, for j =12,.i,-1
SCALE()) = 4 d,, for j = i,,i,+l,..,i, and
pj, for j = i +Li,+2,..n.
The order in which the interchanges are made is n to i,;+1, then 1 to i,,~1.

8: INFO - INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.
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7. Accuracy
The errors are negligible, compared with those in subsequent computations.

8. Further Comments
If the matrix A is balanced by this routine, then any eigenvectors computed subsequently are

eigenvectors of the matrix A” (see Section 3) and hence FOSNJF (SGEBAK/DGEBAK ) must
then be called to transform them back to eigenvectors of A.

If the Schur vectors of A are required, then this routine must not be called with JOB = 'S' or 'B',
because then the balancing transformation is not orthogonal. If this routine is called with

’

JOB = 'P', then any Schur vectors computed subsequently are Schur vectors of the matrix A",
and FOSNJF must be called (with SIDE = 'R') to transform them back to Schur vectors of A.

The total number of floating-point operations is approximately proportional to n2.
The complex analogue of this routine is FOSNVF (CGEBAL/ZGEBAL).

9. Example
To compute all the eigenvalues and right eigenvectors of the matrix A, where

5.14 091 0.00 -32.80

091 020 0.00 34.50

1.90 0.80 -040 -3.00}"

-033 035 0.00 066

The program first calls FOSNHF (SGEBAL/DGEBAL) to balance the matrix; it then computes
the Schur factorization of the balanced matrix, by reduction to Hessenberg form and the QR
algorithm. Then it calls FOSQKF (STREVC/DTREVC) to compute the right eigenvectors of the
balanced matrix, and finally calls FOSNJF (SGEBAK/DGEBAK) to transform the eigenvectors
back to eigenvectors of the original matrix A.

A=

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8SNHF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LDH, LWORK, LDVL, LDVR
PARAMETER (NMAX-8,LDA=NMAX,LDH-NMAX,LWORK—64*NMAX,LDVL-1,
+ LDVR=NMAX)
* .. Local Scalars ..
INTEGER I, IFAIL, IHI, ILO, INFO, J, M, N
* .. Local Arrays ..
real A(LDA,NMAX), H(LDH,NMAX), SCALE(NMAX), TAU(NMAX),
+ VL(LDVL,1), VR(LDVR,NMAX), WI(NMAX), WORK(LWORK),
+ WR (NMAX)
LOGICAL SELECT(1)
* .. External Subroutines ..
EXTERNAL sgebak, sgebal, sgehrd, shseqr, sorghr, strevc,
+ FO6QFF, XO04CAF
* .. Executable Statements ..
WRITE (NOUT,*) ‘FO8NHF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN
* Read A from data file

READ (NIN,*) ((A(I,J),J=1,N),I=1,N)
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* Balance A
CALL sgebal(’Both’ ,N,A,LDA,ILO,IHI,SCALE, INFO)
* Reduce A to upper Hessenberg form H = (Q**T)*A*xQ
CALL sgehrd(N, ILO,IHI,A,LDA, TAU, WORK, LWORK, INFO)
* Copy A to H
CALL FO6QFF(’General’,N,N,A,LDA, H, LDH)
* Copy A into VR
CALL FO06QFF(’General’,N,N,A,LDA,VR,LDVR)
* Form Q explicitly, storing the result in VR
CALL sorghr(N,1,N,VR,LDVR, TAU, WORK, LWORK, INFO)
* Calculate the eigenvalues and Schur factorization of A

CALL shsegr(’Schur form’,’Vectors’,N,ILO,IHI,H,LDH,WR,WI,VR,
+ LDVR, WORK, LWORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.0) THEN
WRITE (NOUT,*) ’'Failure to converge.’
ELSE
WRITE (NOUT,*) ’Eigenvalues’
WRITE (NOUT,99999) (' (’',WR(I),’,’,WI(I),’)’,I=1,N)
* Calculate the eigenvectors of A, storing the result in VR

CALL streve(’Right’,’Overwrite’,SELECT,N,H,LDH, VL, LDVL, VR,
+ LDVR, N, M, WORK, INFO)

* Backtransform eigenvectors
CALL sgebak(’Both’,’Right’,N, ILO, IHI, SCALE,M,VR,LDVR, INFO)
* Print eigenvectors

WRITE (NOUT, *)

IFAIL = 0
*
CALL XO04CAF(’General’,’ ’,N,M,VR,LDVR,
+ ’Contents of array VR’ ,IFAIL)
*
END IF
END IF
STOP

*

99999 FORMAT (1X,A,F8.4,A,F8.4,A)
END

9.2. Program Data

FOBNHF Example Program Data
4 :Value of N
5.14 0.91 0.00 -32.80
0.91 0.20 0.00 34.50
1.90 0.80 -0.40 -3.00
-0.33 0.35 0.00 0.66 :End of matrix A
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9.3. Program Results

FO8SNHF Example Program Results

FOSNHF (SGEBAL/DGEBAL)

Eigenvalues
( -0.4000, 0.0000)
( 3.0136, 0.0000)
( —4.0208, 0.0000)
( 7.0072, 0.0000)
Contents of array VR
1 2 3 4
1 0.0000 1.1688 4.4886 3.8149
2 0.0000 1.9812 -9.1416 -0.6873
3 1.0000 1.0000 0.4930 1.0000
4 0.0000 0.1307 1.0000 -0.2362
[NP2478/16)
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FOSNJF (SGEBAK/DGEBAK) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FO8NJF (SGEBAK/DGEBAK) transforms eigenvectors of a balanced matrix to those of the
original real nonsymmetric matrix.

Specification
SUBROUTINE FO08NJF (JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)
ENTRY sgebak (JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)
INTEGER N, ILO, IHI, M, LDV, INFO
real SCALE(*), V(LDV, *)

CHARACTER*1  JOB, SIDE
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a real nonsymmetric matrix A has been balanced by
FOSNHF (SGEBAL/DGEBAL), and eigenvectors of the balanced matrix A’,, have subsequently
been computed.

For a description of balancing, see the document for FOBNHF. The balanced matrix A” is
obtained as A” = DPAP'D™', where P is a permutation matrix and D is a diagonal scaling
matrix. This routine transforms left or right eigenvectors as follows:

— if x is a right eigenvector of A”,
PTD'x is a right eigenvector of A;
—if y is a left eigenvector of A”,
PTDy is a left eigenvector of A.

References

None.

Parameters

JOB — CHARACTER*1. Input
Onentry.: this must be the same parameter JOB as supplied to FOSNHF
(SGEBAL/DGEBAL).

Constraint: JOB = 'N', 'P', 'S' or 'B'.

SIDE — CHARACTER*1. Input
On entry: indicates whether left or right eigenvectors are to be transformed, as follows:
if SIDE = 'L, then left eigenvectors are transformed;
if SIDE = 'R’, then right eigenvectors are transformed.
Constraint: SIDE = L' or R'.

N - INTEGER. Input
On entry: n, the number of rows of the matrix of eigenvectors.
Constraint: N 2 0.
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ILO - INTEGER. Input
IHI — INTEGER. Input

On entry: the values i,, and i,;, as returned by FOBNHF (SGEBAL/DGEBAL).

Constraints: 1 < ILO < IHI £ Nif N > 0,
IO =1and IHI = 0if N = 0.

SCALE(*) — real array. Input
Note: the dimension of the array SCALE must be at least max(1,N).

On entry: details of the permutations and/or the scaling factors used to balance the original
real nonsymmetric matrix, as returned by FOSNHF (SGEBAL/DGEBAL).

M - INTEGER. Input
On entry. m, the number of columns of the matrix of eigenvectors.
Constraint: M 2 0.

V(LDV,*) — real array. Input!/ Output
Note: the second dimension of the array V must be at least max(1,M).
On entry: the matrix of left or right eigenvectors to be transformed.
On exit: the transformed eigenvectors.

LDV — INTEGER. Input

On entry: the first dimension of the array V as declared in the (sub)program from which
FO8NJF (SGEBAK/DGEBAK) is called.

Constraint. LDV 2 max(1,N).

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The errors are negligible.

Further Comments
The total number of floating-point operations is approximately proportional to nm.
The complex analogue of this routine is FOSNWF (CGEBAK/ZGEBAK).

Example
See the example for FOSNHF (SGEBAL/DGEBAL).
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FOSNSF (CGEHRD/ZGEHRD) - NAG Fortran Library Routine Document

Note: before using this routine, pleasc read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose
FOSNSF (CGEHRD/ZGEHRD) reduces a complex general matrix to Hessenberg form.
Specification
SUBROUTINE FO8NSF (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
ENTRY cgehrd (N, I1LO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER N, ILO, IHI, LDA, LWORK, INFO
complex A(LDA, *), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description
This routine reduces a complex general matrix A to upper Hessenberg form H by a unitary
similarity transformation: A = QHQY. H has real subdiagonal elements.

The matrix Q is not formed explicitly, but is represented as a product of elementary reflectors
(see the Chapter Introduction for details). Routines are provided to work with Q in this
representation (see Section 8).

The routine can take advantage of a previous call to FOSNVF (CGEBAL/ZGEBAL), which may
produce a matrix with the structure:

All Al2 A13

An An

Az
where A,, and A;; are upper triangular. If so, only the central diagonal block A,,, in rows and
columns i, to i, needs to be reduced to Hessenberg form (the blocks A,, and A,, will also be
affected by the reduction). Therefore the values of i,, and i, determined by FOSNVF can be

supplied to the routine directly. If FOSNVF has not previously been called however, then i,, must
be setto 1 and i, to n.

References

[1] GOLUB, G.H. and VAN LOAN, CF.
Matrix Computations, §7.4.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters

N — INTEGER. Input
Onentry: n, the order of the matrix A.
Constraint: N 2 0,

ILO — INTEGER. Input
IHI - INTEGER. Input

On entry: if A has been output by FOSNVF (CGEBAL/ZGEBAL), then ILO and IHI must
contain the values returned by that routine. Otherwise, ILO must be set to 1 and IHI to N.

Constraints: 1 S ILO < IHI £ Nif N > 0,
DO =1andIHI = 0if N = 0.
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A(LDA,*) — complex array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the n by n general matrix A.

On exit: A is overwritten by the upper Hessenberg matrix H and details of the unitary matrix
Q. The subdiagonal elements of H are real.

LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSNSF (CGEHRD/ZGEHRD) is called.

Constraint: LDA 2 max(1,N).

TAU (*) — complex array. Output
Note: the dimension of the array TAU must be at least max(1,N-1).
On exit: further details of the unitary matrix Q.

WORK (LWORK) — complex array. Workspace
Onexit: if INFO = 0, WORK (1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSNSF (CGEHRD/ZGEHRD) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb, where nb is
the blocksize.

Constraint: LWORK 2 max(1,N).

INFO — INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed Hessenberg matrix H is exactly similar to a nearby matrix A + E, where

IENl, < c(n)elAllz,
c(n) is a modestly increasing function of n, and € is the machine precision.

The elements of H themselves may be sensitive to small perturbations in A or to rounding errors
in the computation, but this does not affect the stability of the eigenvalues, eigenvectors or Schur
factorization.

Further Comments

The total number of real floating-point operations is approximately ig°(2g+3n), where
3

q = iy—i,;ifi, = 1andi, = n, the number is approximately ‘1%1

To form the unitary matrix Q this routine may be followed by a call to FOSNTF
(CUNGHR/ZUNGHR):

CALL CUNGHR (N, ILO,IHI,A,LDA,TAU,WORK, LWORK, INFO)

Page 2 [NP2478/16)



FO08 - Least-squares and Eigenvalue Problems (LAPACK) FOSNSF (CGEHRD/ZGEHRD)

To apply Q to an m by n complex matrix C this routine may be followed by a call to FOSNUF
(CUNMHR/ZUNMHR). For example,

CALL CUNMHR (’Left’,’No Transpose’,M,N,ILO,IHI,A,LDA,TAU,C,LDC,
+ WORK, LWORK, INFO)

forms the matrix product QC.
The real analogue of this routine is FOSNEF (SGEHRD/DGEHRD).

9. Example
To compute the upper Hessenberg form of the matrix A, where

-3.97 - 5.04i -4.11 + 3.70i -0.34 + 1.01i 129 - 0.86i
0.34 — 1.50i 152 - 043i 1.88 — 538/ 3.36 + 0.65i
331 - 3.85i 250 + 345i 088 — 1.08/ 0.64 — 1.48i |

-1.10 + 0.82i 1.81 - 1.59i 3.25 + 1.33i 1.57 — 3.44i

A=

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8BNSF Example Program Text
* Mark 16 Release. NAG Copyright 1992,
* .. Parameters
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LWORK
PARAMETER (NMAX=8, LDA=NMAX, LWORK=64 *NMAX )
complex ZERO
PARAMETER (ZERO=(0.0e0,0.0e0))
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, N
* .. Local Arrays
complex A(LDA,NMAX), TAU(NMAX-1), WORK(LWORK)
CHARACTER CLABS(1), RLABS(1l)
* .. External Subroutines ..
EXTERNAL XO04DBF, cgehrd
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8NSF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN
* Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,N)
* Reduce A to upper Hessenberg form
CALL cgehrd(N,1,N,A,LDA, TAU, WORK, LWORK, INFO)

* Set the elements below the first sub-diagonal to zero

DO 40 I =1, N - 2
DO 20 J=1I+ 2, N
A(J,I) = ZERO
20 CONTINUE
40 CONTINUE

*

Print upper Hessenberg form

WRITE (NOUT, *)
IFAIL = 0
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CALL X04DBF(’General’,’ ’,N,N,A,LDA,’Bracketed’,’F7.4’,

+ 'Upper Hessenberg form’,’Integer’,RLABS,’'Integer’,
+ CLABS, 80,0, IFAIL)
*
END IF
STOP
END

9.2. Program Data

FO8BNSF Example Program Data
4 :Value of N
(-3.97,-5.04) (-4.11, 3.70) (-0.34, 1.01) ( 1.29,-0.86)
( 0.34,-1.50) ( 1.52,-0.43) ( 1.88,-5.38) ( 3.36, 0.65)
( 3.31,-3.85) ( 2.50, 3.45) ( 0.88,-1.08) ( 0.64,-1.48)
(-1.10, 0.82) ( 1.81,-1.59) ( 3.25, 1.33) ( 1.57,-3.44) :End of matrix A

9.3. Program Results
FO8SNSF Example Program Results

Upper Hessenberg form

1 2 3 4
(-3.9700,-5.0400) (-1.1318,-2.5693) (-4.6027,-0.1426) (-1.4249, 1.7330)
(-5.4797, 0.0000) ( 1.8585,-1.5502) ( 4.4145,-0.7638) (-0.4805,-1.1976)
( 0.0000, 0.0000) ( 6.2673, 0.0000) (-0.4504,-0.0290) (-1.3467, 1.6579)
( 0.0000, 0.0000) ( 0.0000, 0.0000) (-3.5000, 0.0000) ( 2.5619,-3.3708)

S WP
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FOSNTF (CUNGHR/ZUNGHR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOSNTF (CUNGHR/ZUNGHR ) generates the complex unitary matrix Q which was determined
by FOSNSF (CGEHRD/ZGEHRD), when reducing a complex general matrix A to Hessenberg
form.

Specification
SUBROUTINE FOS8NTF (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
ENTRY cunghr (N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
INTEGER N, ILO, IHI, LDA, LWORK, INFO
complex A(LDA, *), TAU(*), WORK(LWORK)

The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used following a call to FOSNSF (CGEHRD/ZGEHRD), which
reduces a complex general matrix A to upper Hessenberg form H by a unitary similarity
transformation: A = QHQ". FOSNSF represents the matrix Q as a product of i,,—i,, elementary
reflectors. Here i,, and i,; are values determined by FOSNVF (CGEBAL/ZGEBAL) when
balancing the matrix; if the matrix has not been balanced, i,, = 1 and i,; = n.

This routine may be used to generate Q explicitly as a square matrix. Q has the structure:
I 0 0
Q=100Q, 0
0 0 I
where Q,, occupies rows and columns i, to ij.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §7.4.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters

N — INTEGER. Input
Onentry: n, the order of the matrix Q.
Constraint: N 2 0.

ILO - INTEGER. Input
IHI - INTEGER. Input

Onentry: these must be the same parameters ILO and IHI, respectively, as supplied to
FOSNSF (CGEHRD/ZGEHRD).

Constraints: 1 < ILO < IHI £ Nif N > 0,
IO =1andIHI = 0if N = 0.

A(LDA,*) — complex array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).

Onentry: details of the vectors which define the elementary reflectors, as returned by
FOSNSF (CGEHRD/ZGEHRD).

On exit: the n by n unitary matrix Q.
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LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSNTF (CUNGHR/ZUNGHR) is called.

Constraint: LDA 2 max(1,N).

TAU(*) — complex array. Input
Note: the dimension of the array TAU must be at least max (1,N-1).

Onentry. further details of the elementary reflectors, as returned by FOSNSF
(CGEHRD/ZGEHRD).

WORK (LWORK) — complex array. Workspace

Oneexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSNTF (CUNGHR/ZUNGHR) is called.

Suggested value: for optimum performance LWORK should be at least (IHI-ILO)xnb,
where nb is the blocksize.

Constraint: LWORK 2 max(1,IHI-ILO).

INFO - INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

where € is the machine precision.

Further Comments

16¢°
3 bl

The real analogue of this routine is FOSNFF (SORGHR/DORGHR).

The total number of real floating-point operations is approximately where g = i,;—i,,.

Example
To compute the Schur factorization of the matrix A, where

-3.97 - 5.04i -4.11 + 3.70i -0.34 + 1.01i 129 — 0.86i
034 — 1.50i 152 - 043; 1.88 — 538i 3.36 + 0.65i
331 - 385i 250 + 345/ 0.88 — 1.08i 0.64 — 1.48i )

-1.10 + 0.82i 1.81 - 1.59i 3.25 + 1.33i 1.57 - 3.44i

Here A is general and must first be reduced to Hessenberg form by FOSNSF
(CGEHRD/ZGEHRD). The program then calls FOSNTF (CUNGHR/ZUNGHR) to form Q,
and passes this matrix to FOSPSF (CHSEQR/ZHSEQR) which computes the Schur factorization
of A.

A=
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9.1. Program Text

Note: the listing of the example program presented below uses bold italicised torms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

*
*
*

* % * F X % *

* *

[NP2478/16]

FOSNTF Example Program Text
Mark 16 Release. NAG Copyright 1992.
.. Parameters ..

INTEGER NIN, NOUT

PARAMETER (NIN=5, NOUT=6)

INTEGER NMAX, LDA, LDZ, LWORK

PARAMETER (NMAX=8, LDA=NMAX, LDZ=NMAX, LFORK=64* (NMAX-1) )
.. Local Scalars ..

INTEGER I, IFAIL, INFO, J, N

.. Local Arrays ..

complex A(LDA,NMAX), TAU(NMAX), W(NMAX), WORK(LWORK),
+ Z(LDZ, NMAX)

CHARACTER CLABS(1), RLABS(1)

.. External Subroutines ..

EXTERNAL FO6TFF, X04DBF, cgehrd, chseqr, cunghr

.. Executable Statements ..
WRITE (NOUT,*) ’‘FO8SNTF Example Program Results’
Skip heading in data file
READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN
Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,N)
Reduce A to upper Hessenberg form H = (Q**H)*AxQ
CALL cgehrd(N,1,N,A,LDA, TAU, WORK, LWORK, INFO)
Copy A into 2
CALL FO6TFF(’General’,N,N,A,LDA,Z,LDZ)
Form Q explicitly, storing the result in 2

CALL cunghr(N,1,N,2,LDZ, TAU, WORK, LWORK, INFO)

Calculate the Schur factorization of H = YxTx(Y*x*xH) and form
Q*Y explicitly, storing the result in Z

Note that A = Z*xT*(Z**H), where Z = Q*Y

CALL chsegr(’ Schur form’,'Vectors’,N,1,N,A,LDA,W,2,LDZ,WORK,

+ LWORK, INFO)

Print Schur form

WRITE (NOUT, *)

IFAIL = 0

CALL XO04DBF(’General’,’ ’,N,N,A,LDA,’Bracketed’,’F7.4’,
+ ’Schur form’,’Integer’,RLABS,’Integer’,CLABS,80,0,
+ IFAIL)

Print Schur vectors

WRITE (NOUT, *)

IFAIL = 0

CALL X04DBF(’General’,’ ’,N,N,Z,LDZ,’Bracketed’,’F7.4’,
+ ’Schur vectors of A’,’'Integer’,RLABS,’ Integer’,
+ CLABS, 80,0, IFAIL)
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END IF
STOP

END

9.2. Program Data

FO8 — Least-squares and Eigenvalue Problems (LAPACK)

FOSNTF Example Program Data

4

(-3.97,-5.04) (-4.11,
( 0.34,-1.50) ( 1.52,-0.43)
( 3.31,-3.85) ( 2.50, 3.45)
0.82) ( 1.81,-1.59)

(-1.10,

9.3. Program Results

3.70)

1.01)
88,—5 38)
88,-1.08)

(-0.3
( 1.
(0.
( 3.25, 1.33)

FOSNTF Example Program Results

Schur form

o WwN P

(—6.0004,—6.9998)
( 0.0000,
( 0.0000,
( 0.0000,

0.0000)
0.0000)
0.0000)

Schur vectors of A

LoNVVE O

( 0.8457,
(-0.0177,
( 0.0875,
(-0.0561,-0.2906)

1
0.0000)

0.3036)
0.3115)

2
.4701,-0.2119) (
0000, 2.0060) ¢

0.0000) ¢
0.0000) ¢

2
0.1351) (
0.4660) (
0.0000) (
-0.3339) (

-0.1755,

1.29,-0.86)
3.36, 0.65)
0.64,-1.48)
1.57,-3.44)

3
0.0438, 0.5124)
0.7150,-0.1028)
7.9982,-0.9964)
0.0000, 0.0000)

3
0.2297)
0.0000)
0.4999)
0.0195)

0.7228,
0.2871,
0.2476,

:Value of N

tEnd of matrix A

4
0.9097,-0.0925)

-0.0580, 0.2575)

0.2232,-1.0549)
3.0023,-3.9998)

4
0.1099,-0.2007)
0.0336, 0.2312)
0.0944,-0.3947)
0.8534, 0.0000)
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FOSNUF (CUNMHR/ZUNMHR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

FOSNUF (CUNMHR/ZUNMHR) multiplies an arbitrary complex matrix C by the complex
unitary matrix Q which was determined by FOSNSF (CGEHRD/ZGEHRD) when reducing a
complex general matrix to Hessenberg form.

2. Specification
SUBROUTINE FO8NUF (SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC,

1 WORK, LWORK, INFO)
ENTRY cunmhr (SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC,
1 WORK, LWORK, INFO)

INTEGER M, N, ILO, IHI, LDA, LDC, LWORK, INFO

complex A(LDA, *), TAU(*), C(LDC, *), WORK(LWORK)

CHARACTER*1  SIDE, TRANS
The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine is intended to be used following a call to FOSNSF (CGEHRD/ZGEHRD), which
reduces a complex general matrix A to upper Hessenberg form H by a unitary similarity
transformation: A = QHQ". FOSNSF represents the matrix Q as a product of i,;—i,, elementary
reflectors. Here i,, and i,; are values determined by FOSNVF (CGEBAL/ZGEBAL) when
balancing the matrix; if the matrix has not been balanced, i, = 1 and i,; = n.

This routine may be used to form one of the matrix products
Qc, @¥c, €@ or CQ¥,
overwriting the result on C (which may be any complex rectangular matrix).

A common application of this routine is to transform a matrix V of eigenvectors of H to the
matrix QV of eigenvectors of A.

4. References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

S. Parameters
1:  SIDE — CHARACTER*1. Input
On entry: indicates how Q or Q is to be applied to C as follows:
if SIDE = 'L', then Q or Q¥ is applied to C from the left;
if SIDE = 'R, then Q or Q¥ is applied to C from the right.
Constraint: SIDE = L' or R'.

2:  TRANS - CHARACTER*1. Input
On entry: indicates whether Q or Q¥ is to be applied to C as follows:
if TRANS = 'N', then Q is applied to C;
if TRANS = 'C', then Q¥ is applied to C.
Constraint: TRANS = 'N' or 'C'.
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3: M - INTEGER. Input
On entry: m, the number of rows of the matrix C; m is also the order of Q if SIDE = L'
Constraint: M 2 0.

4: N - INTEGER. Input
On entry: n, the number of columns of the matrix C; n is also the order of Q if SIDE = R
Constraint: N 2 0.

5: ILO — INTEGER. Input
6: IHI — INTEGER. Input

On entry. these must be the same parameters ILO and IHI, respectively, as supplied to
FOSNSF (CGEHRD/ZGEHRD).

Constraints: 1 S ILO < IHI < Mif SIDE = L'and M > 0;
ILO=1and IHI = 0if SIDE = L'and M = 0;

1<ILOSIHI < Nif SIDE = R'and N > 0;
ILO = 1and IHI = 0 if SIDE = R'and N = 0.
7:  A(LDA*) — complex array. Input

Note: the second dimension of the array A must be at least max(1,M) if SIDE = 'L' and at
least max(1,N) if SIDE = R’

Onentry. details of the vectors which define the elementary reflectors, as returned by
FOSNSF (CGEHRD/ZGEHRD).

8: LDA — INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSNUF (CUNMHR/ZUNMHR) is called.

Constraints: LDA 2 max(1,M) if SIDE = L',
LDA 2 max(1,N) if SIDE = R’
9:  TAU(*) — complex array. Input

Note: the dimension of the array TAU must be at least max(1,M-1) if SIDE = L' and at
least max(1,N-1) if SIDE = 'R".

Onentry: further details of the elementary reflectors, as returned by FO8NSF
(CGEHRD/ZGEHRD).

10: C(LDC,*) — complex array. Input/ Output
Note: the second dimension of the array C must be at least max(1,N).
On entry: the m by n matrix C.
On exit: C is overwritten by QC or Q¥ C or CQ¥ or CQ as specified by SIDE and TRANS.

11: LDC - INTEGER. Input

On entry: the first dimension of the array C as declared in the (sub)program from which
FOSNUF (CUNMHR/ZUNMHR) is called.

Constraint: LDC 2 max(1,M).

122 WORK(LWORK) — complex array. Workspace

Onexit: if INFO = 0, WORK(1) contains the minimum value of LWORK required for
optimum performance.
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13:

14:

9.1.

LWORK - INTEGER. Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
FOSNUF (CUNMHR/ZUNMHR) is called.

Suggested value: for optimum performance LWORK should be at least Nxnb if SIDE = L'
and at least Mxnb if SIDE = 'R’, where nb is the blocksize.

Constraints: LWORK 2 max(1,N) if SIDE = L/,
LWORK 2 max(1,M) if SIDE = R'.

INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The computed result differs from the exact result by a matrix E such that
IEN, = O(&)ICl,,

where € is the machine precision.

Further Comments

The total number of real floating-point operations is approximately 8ng? if SIDE = 'L' and 8mg*
if SIDE = 'R', where ¢ = i,,—i,,.

The real analogue of this routine is FOBNGF (SORMHR/DORMHR ).

Example
To compute all the eigenvalues of the matrix A, where

-397 - 5.04i -4.11 + 3.70i -0.34 + 1.01i 1.29 - 0.86i
034 - 1.50i 152 - 043i 1.88 - 538/ 3.36 + 0.65i
331 - 385 250 +345i 088 — 1.08i 064 — 148i )’

-1.10 + 0.82i 181 - 159 3.25 + 1.33i 1.57 - 3.44i

and those eigenvectors which correspond to eigenvalues A such that Re(4) < 0. Here A is
general and must first be reduced to upper Hessenberg form H by FO8NSF
(CGEHRD/ZGEHRD). The program then calls FOSPSF (CHSEQR/ZHSEQR) to compute the
eigenvalues, and FOSPXF (CHSEIN/ZHSEIN) to compute the required eigenvectors of H by
inverse iteration. Finally FOSNUF (CUNMHR/ZUNMHR) is called to transform the
eigenvectors of H back to eigenvectors of the original matrix A.

A=

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8NUF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LDH, LDZ, LWORK, LDVL, LDVR
PARAMETER (NMAX=8, LDA=NMAX, LDH=NMAX, LDZ=1, LWORK=64 *NMAX,
+ LDVL=NMAX, LDVR=NMAX)
* .. Local Scalars ..
real THRESH
INTEGER I, IFAIL, INFO, J, M, N
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.. Local Arrays

complex A(LDA,NMAX), H(LDH,NMAX), TAU(NMAX),
+ VL(LDVL,NMAX), VR(LDVR,NMAX), W(NMAX),
+ WORK(LWORK), Z(LDZ,1)

real RWORK ( NMAX )

INTEGER IFAILL(NMAX), IFAILR(NMAX)

LOGICAL SELECT (NMAX)

CHARACTER CLABS(1), RLABS(1)

.. External Subroutines ..

EXTERNAL FO6TFF, XO04DBF, cgehrd, chsein, chseqr, cunmhr
.. Intrinsic Functions ..

INTRINSIC real, imag

.. Executable Statements ..
WRITE (NOUT,*) ’'FO8NUF Example Program Results’
Skip heading in data file
READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN
Read A from data file
READ (NIN,*) ((A(I,J),J=1,N),I=1,N)
READ (NIN,*) THRESH
Reduce A to upper Hessenberg form H = (Q**H)*A*Q
CALL cgehrd(N,1,N,A,LDA, TAU, WORK, LWORK, INFO)
Copy A to H
CALL FO6TFF(’General’,N,N,A,LDA,H,LDH)

Calculate the eigenvalues of H (same as A)

CALL chseqr(’'Eigenvalues’,’No vectors’,N,1,N,H,LDH,W,Z,LD2Z,

+ WORK, LWORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.0) THEN
WRITE (NOUT,*) ‘Failure to converge.’
ELSE
WRITE (NOUT,*) ’Eigenvalues’
WRITE (NOUT,99999) (' (’,real(W(I)),’,’,imag(W(I)),’)’,I=1,

+ N)

DO 20 I =1, N
SELECT(I) = real(W(I)) .LT. THRESH
CONTINUE

Calculate the eigenvectors of H (as specified by SELECT),
storing the result in VR

CALL chsein(’Right’,’'QR’,’No initial vectors’,SELECT,N,A,

+ LDA, W, VL, LDVL, VR, LDVR, N, M, WORK, RWORK, IFAILL,
+ IFAILR, INFO)

Calculate the eigenvectors of A = Q * (eigenvectors of H)

CALL cunmhr(’Left’,’No transpose’,N,M,1,N,A,LDA, TAU,VR,LDVR,

+ WORK, LWORK, INFO)

Print eigenvectors

WRITE (NOUT, *)
IFAIL = 0

CALL X04DBF(’General’,’” ’,N,M,VR,LDVR,’'Bracketed’,’'F7.4’,

+ 'Contents of array VR’,’Integer’,RLABS,
+ Integer’,CLABS,80,0,IFAIL)
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END IF
END IF
STOP
*
99999 FORMAT ((3X,4(A,F7.4,A,F7.4,A,:)))
END

9.2. Program Data

FO8SNUF Example Program Data
4 :Value of N

(-3.97,-5.04) (-4.11, 3.70) (-0. 1.01) ( 1.29,-0.86)
( 0.34,-1.50) ( 1.52,-0.43) ( 1. 88 -5.38) ( 3.36, 0.65)
( 3.31,-3.85) ( 2.50, 3.45) ( O. 88 -1.08) ( 0.64,-1.48)
(-1.10, 0.82) ( 1.81,-1.59) ( 3. 1.33) ( 1.57,-3.44) :End of matrix A
0.0 :Value of THRESH

9.3. Program Results
FO8NUF Example Program Results

Eigenvalues
(-6.0004,-6.9998) (-5.0000, 2.0060) ( 7.9982,-0.9964) ( 3.0023,-3.9998)

Contents of array VR

1 2
1 ( 1.0000, 0.0000) ( 0.2613, 0.5284)
2 (-0.0210, 0.3590) ( 0.6485, 0.4683)
3 ( 0.1035, 0.3683) (-0.0323,-0.8516)
4 (-0.0664,-0.3436) (-0.4521, 0.1368)
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FOSNVF (CGEBAL/ZGEBAL) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold ifalicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOSNVF (CGEBAL/ZGEBAL) balances a complex general matrix in order to improve the
accuracy of computed eigenvalues and/or eigenvectors.

Specification
SUBROUTINE FO8NVF (JOB, N, A, LDA, ILO, IHI, SCALE, INFO)
ENTRY cgebal (JOB, N, A, LDA, ILO, IHI, SCALE, INFO)
INTEGER N, LDA, ILO, IHI, INFO
real SCALE (*)
complex A(LDA, *)

CHARACTER*1  JOB
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine balances a complex general matrix A. The term ‘balancing’ covers two steps, each
of which involves a similarity transformation of A. The routine can perform either or both of
these steps.

1. The routine first attempts to permute A to block upper triangular form by a similarity
transformation:
Ay Ap Al
PAPT =A'=| 0 Ay Ay
0 0 Ay,

where P is a permutation matrix, and A}, and A}, are upper triangular. Then the diagonal
clements of A}, and A}, are eigenvalues of A. The rest of the eigenvalues of A are the
eigenvalues of the central diagonal block A),, in rows and columns i, to i,. Subsequent
operations to compute the eigenvalues of A (or its Schur factorization) need only be applied to
these rows and columns; this can save a significant amount of work if i{,, > 1 and i,; < n.If no
suitable permutation exists (as is often the case), the routine sets i, = 1and i,; = n, and A}, is
the whole of A.

2. The routine applies a diagonal similarity transformation to A’, to make the rows and columns
of A5, as close in norm as possible:
I 0 0\ /A}, A, AL\ /T 0 O
A" =DAD™ = |0 D, 0]l 0 Ay Ay ){0 D5 o).
0 0 I/\0 0 A;,/\0 0 I

This scaling can reduce the norm of the matrix (that is, |[A"5,|| < A% |l), and hence reduce the
effect of rounding errors on the accuracy of computed eigenvalues and eigenvectors.

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §7.5.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.
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5. Parameters
1:  JOB — CHARACTER*1. Input
On entry: indicates whether A is to be permuted to and/or scaled (or neither), as follows:

if JOB = 'N, then A is neither permuted nor scaled (but values are assigned to ILO,
IHI and SCALE);

if JOB = P, then A is permuted but not scaled;

if JOB = 'S', then A is scaled but not permuted;

if JOB = 'B', then A is both permuted and scaled.
Constraint: JOB = 'N', 'P', 'S' or 'B'.

2: N - INTEGER. Input
On entry: n, the order of the matrix A.
Constraint: N 2 0.

3:  A(LDA,*) — complex array. Input/ Output
Note: the second dimension of the array A must be at least max(1,N).
On entry: the n by n general matrix A.
On exit: A is overwritten by the balanced matrix.
A is not referenced if JOB = 'N'.

4:  LDA - INTEGER. Input

On entry: the first dimension of the array A as declared in the (sub)program from which
FOSNVF (CGEBAL/ZGEBAL) is called.

Constraint: LDA 2 max(1,N).

5: ILO — INTEGER. Output
6: IHI — INTEGER. Output
On exit: the values i,, and i,; such that on exit A(i) is zeroif i > jand 1 < j < i, or
iy <isSn
IfJOB = 'N'or 'S, then i,, = 1 and i,; = n.
7:  SCALE(*) — real array. Output
Note: the dimension of the array SCALE must be at least max(1,N).
On exit: details of the permutations and scaling factors applied to A. More precisely, if p; is
the index of the row and column interchanged with row and column j and d; is the scaling
factor used to balance row and column j, then
pj, for j = 12,..i,-1
SCALE(j) = 4 d;, for j = i,,i,+1,..i, and
pj, for j = iy+Li,+2,. . .n.
The order in which the interchanges are made is n to i,;+1, then 1 to i,,—1.
8: INFO - INTEGER. Output

On exit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Page 2 [NP2478/16]



F08 — Least-squares and Eigenvalue Problems (LAPACK) FOSNVF (CGEBAL/ZGEBAL)

7. Accuracy
The errors are negligible, compared with those in subsequent computations.

8. Further Comments

If the matrix A is balanced by this routine, then any eigenvectors computed subsequently are
eigenvectors of the matrix A” (see Section 3) and hence FOSNWF (CGEBAK/ZGEBAK ) must
then be called to transform them back to eigenvectors of A.

If the Schur vectors of A are required, then this routine must not be called with JOB = 'S' or 'B',
because then the balancing transformation is not unitary. If this routine is called with JOB = P,
then any Schur vectors computed subsequently are Schur vectors of the matrix A”, and FOSNWF
must be called (with SIDE = 'R') to transform them back to Schur vectors of A.

The total number of real floating-point operations is approximately proportional to n2.
The real analogue of this routine is FOSNHF (SGEBAL/DGEBAL).

9. Example
To compute all the eigenvalues and right eigenvectors of the matrix A, where

1.50 — 2.75i 0.00 + 0.00i 0.00 + 0.00i 0.00 + 0.00i
-8.06 — 1.24i -2.50 — 0.50i 0.00 + 0.00i —0.75 + 0.50i
-2.09 + 7.56i 1.39 + 397i -1.25 + 0.75i -4.82 — 567i |

6.18 + 9.79i -0.92 - 0.62i 0.00 + 0.00i -2.50 — 0.50i

The program first calls FOSNVF (CGEBAL/ZGEBAL) to balance the matrix; it then computes
the Schur factorization of the balanced matrix, by reduction to Hessenberg form and the QR
algorithm. Then it calls FOBQXF (CTREVC/ZTREVC) to compute the right eigenvectors of the
balanced matrix, and finally calls FOSNWF (CGEBAK/ZGEBAK) to transform the eigenvectors
back to eigenvectors of the original matrix A.

A=

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8NVF Example Program Text
* Mark 16 Release. NAG Copyright 1992,
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDA, LDH, LWORK, LDVL, LDVR
PARAMETER (NMAX=8, LDA=NMAX, LDH=NMAX, LWORK=64 *NMAX , LDVL=1,
+ LDVR=NMAX)
* .. Local Scalars ..
INTEGER I, IFAIL, IHI, ILO, INFO, J, M, N
* .. Local Arrays ..
complex A(LDA,NMAX), H(LDH,NMAX), TAU(NMAX), VL(LDVL, 1),
+ VR(LDVR, NMAX), W(NMAX), WORK(LWORK)
real RWORK (NMAX), SCALE(NMAX)
LOGICAL SELECT(1)
CHARACTER CLABS(1), RLABS(1)
* .. External Subroutines ..
EXTERNAL FO6TFF, X04DBF, cgebak, cgebal, cgehrd, chsegr,
+ ctrevc, cunghr
* .. Intrinsic Functions ..
INTRINSIC real, imag
* .. Executable Statements ..
WRITE (NOUT,*) ’"FO8NVF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

* Read A from data file
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READ (NIN,*) ((A(I,J),J=1,N),I=1,N)

* Balance A
CALL cgebal(’Both’,N,A,LDA, ILO, IHI, SCALE, INFO)

* Reduce A to upper Hessenberg form H = (Q**H)*Ax*xQ
CALL cgehrd(N, ILO, IHI,A, LDA, TAU, WORK, LWORK, INFO)

* Copy A to H
CALL FO6TFF(’General’,N,N,A,LDA,H,LDH)

* Copy A into VR
CALL FO6TFF('’General’,N,N,A,LDA,VR,LDVR)

* Form Q explicitly, storing the result in VR
CALL cunghr(N,1,N,VR,LDVR, TAU, WORK, LWORK, INFO)

* Calculate the eigenvalues and Schur factorization of A

CALL chseqr(’ Schur form’,’Vectors’, N,ILO,IHI,H,LDH,W,VR,LDVR,
+ WORK, LWORK, INFO)

WRITE (NOUT, *)

IF (INFO.GT.0) THEN
WRITE (NOUT,*) ’‘Failure to converge.’

ELSE
WRITE (NOUT,*) ’Eigenvalues’
WRITE (NOUT,99999) (' (’,real(W(I)),’,’,imag(w(1)),’)’ ,I=1,

+ N)
* Calculate the eigenvectors of A, storing the result in VR

CALL ctrevc(’Right’,’Overwrite’, SELECT,N, H, LDH, VL, LDVL, VR,
+ LDVR, N, M, WORK, RWORK, INFO)

* Backtransform eigenvectors
CALL cgebak(’Both’,’Right’,N, ILO,IHI,SCALE,M,VR,LDVR, INFO)
* Print eigenvectors

WRITE (NOUT, *)

IFAIL = 0
*
CALL X04DBF(’General’,’ ’,N,M,VR,LDVR,’Bracketed’,’F7.4",
+ 'Contents of array VR’,’Integer’,RLABS,
+ ’Integer’,CLABS,80,0,IFAIL) .
*
END IF
END IF
STOP

*
99999 FORMAT ((3X,4(A,F7.4,A,F7.4,4,:)))
END

9.2. Program Data

FOSNVF Example Program Data
4 :Value of N

( 1.50,-2.75) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
(-8.06,-1.24) (-2.50,-0.50) ( 0.00, 0.00) (-0.75, 0.50)
(-2.09, 7.56) ( 1.39, 3.97) (-1.25, 0.75) (-4.82,-5.67)
( 6.18, 9.79) (-0.92,-0.62) ( 0.00, 0.00) (-2.50,-0.50) :End of matrix A
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9.3. Program Results
FOSNVF Example Program Results

Eigenvalues
(-1.2500, 0.7500) (-1.5000,-0.4975) (-3.5000,-0.5025) ( 1.5000,-2.7500)

Contents of array VR
1 2 3 4

1 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.1452, 0.0000)
2 ( 0.0000, 0.0000) (-0.0616, 0.0413) ( 0.4613, 0.0000) (-0.2072,-0.2450)
3 (1.0000, 0.0000) ( 0.6032,-0.3968) ( 0.2983, 0.7017) ( 0.7768, 0.2232)
4 ( 0.0000, 0.0000) ( 0.0822, 0.0000) ( 0.4251, 0.2850) (-0.0119, 0.4372)
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FOSNWF (CGEBAK/ZGEBAK) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1.

Purpose

FOSNWF (CGEBAK/ZGEBAK) transforms eigenvectors of a balanced matrix to those of the
original complex general matrix.

Specification
SUBROUTINE FO8NWF (JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)
ENTRY cgebak (JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)
INTEGER N, ILO, IHI, M, LDV, INFO
real SCALE (*)
complex V(LDV, *)

CHARACTER*1  JOB, SIDE
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine is intended to be used after a complex general matrix A has been balanced by
FOBNVF (CGEBAL/ZGEBAL), and eigenvectors of the balanced matrix A", have subsequently

been computed.

For a description of balancing, see the document for FOSNVF. The balanced matrix A” is
obtained as A” = DPAPTD™, where P is a permutation matrix and D is a diagonal scaling
matrix. This routine transforms left or right eigenvectors as follows:

— if x is a right eigenvector of A",
PTD'x is a right eigenvector of A;
— if y is a left eigenvector of A",
PTDy is a left eigenvector of A.

References

None.

Parameters

JOB — CHARACTER*1. Input
Onentry: this must be the same parameter JOB as supplied to FOSNVF
(CGEBAL/ZGEBAL).

Constraint: JOB = 'N', 'P', 'S' or 'B".

SIDE — CHARACTER*1. Input
On entry: indicates whether left or right eigenvectors are to be transformed, as follows:
if SIDE = 'L', then left eigenvectors are transformed;
if SIDE = 'R/, then right eigenvectors are transformed.
Constraint. SIDE = L' or R'.

N — INTEGER. Inpur
On entry: n, the number of rows of the matrix of eigenvectors.
Constraint: N 2 0.
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10:

ILO — INTEGER. Input
IHI — INTEGER. Input

On entry: the values i, and i,;, as returned by FOSNVF (CGEBAL/ZGEBAL).

Constraints: 1 < ILO < IHI £ Nif N > 0,
DO =1andIHI = 0if N = 0.

SCALE(*) — real array. Input
Note: the dimension of the array SCALE must be at least max(1,N).

On entry: details of the permutations and/or the scaling factors used to balance the original
complex general matrix, as returned by FOSNVF (CGEBAL/ZGEBAL).

M - INTEGER. Input
On entry: m, the number of columns of the matrix of eigenvectors.
Constraint: M 2 0.

V(LDV,*) — complex array. Input/ Output
Note: the second dimension of the array V must be at least max(1,M).
On entry: the matrix of left or right eigenvectors to be transformed.
On exit: the transformed eigenvectors.

LDV — INTEGER. Input

On entry: the first dimension of the array V as declared in the (sub)program from which
FOSNWF (CGEBAK/ZGEBAK) is called.

Constraint: LDV 2 max(1,N).

INFO - INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

Accuracy
The errors are negligible.

Further Comments
The total number of real floating-point operations is approximately proportional to nm.
The real analogue of this routine is FOSNJF (SGEBAK/DGEBAK).

Example
See the example for FOSNVF (CGEBAL/ZGEBAL).

Page 2 (last) ) [NP2478/16]



FO8 — Least Squares and Eigenvalue Problems (LAPACK) FOSPEF (SHSEQR/DHSEQR)

FOSPEF (SHSEQR/DHSEQR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOSPEF (SHSEQR/DHSEQR) computes all the eigenvalues, and optionally the Schur
factorization, of a real Hessenberg matrix or a real general matrix which has been reduced to
Hessenberg form.

Specification

SUBROUTINE FO8PEF (JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, LDZ, WORK,
1 LWORK, INFO)

ENTRY shseqr (JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, LDZ, WORK,
1 LWORK, INFO)

INTEGER N, ILO, IHI, LDH, LDZ, LWORK, INFO

real H(LDH, *), WR(*), WI(*), Z(LDZ,*), WORK(*)

CHARACTER*1  JOB, COMPZ
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine computes all the eigenvalues, and optionally the Schur factorization, of a real upper
Hessenberg matrix H:

H = 2Z1Z",
where T is an upper quasi-triangular matrix (the Schur form of H), and Z is the orthogonal
matrix whose columns are the Schur vectors z;. See Section 8 for details of the structure of T.

The routine may also be used to compute the Schur factorization of a real general matrix A which
has been reduced to upper Hessenberg form H:

A = QHQT, where Q is orthogonal,

(Q2)T(QZ)".

In this case, after FOSNEF (SGEHRD/DGEHRD) has been called to reduce A to Hessenberg
form, FOBNFF (SORGHR/DORGHR ) must be called to form Q explicitly; Q is then passed to
FO8PEF, which must be called with COMPZ = 'V'

The routine can also take advantage of a previous call to FOSNHF (SGEBAL/DGEBAL) which

may have balanced the original matrix before reducing it to Hessenberg form, so that the
Hessenberg matrix H has the structure:

Hll Hl2 H13
H22 H23
H33

where H,, and Hy; are upper triangular. If so, only the central diagonal block H,, (in rows and
columns i, to i,;) needs to be further reduced to Schur form (the blocks H,, and H,, are also
affected). Therefore the values of i, and i,; can be supplied to FOSPEF directly. Also, FOSNJF
(SGEBAK/DGEBAK) must be called after this routine to permute the Schur vectors of the
balanced matrix to those of the original matrix. If FOSNHF has not been called however, then /,,
must be set to 1 and i,; to n. Note that if the Schur factorization of A is required, FOSNHF must
not be called with JOB = 'S’ or 'B', because the balancing transformation is not orthogonal.
FOBPEF uses a multishift form of the upper Hessenberg QR algorithm, due to Bai and Demmel
(1]. The Schur vectors are normalized so that |jz,|l, = 1, but are determined only to within a
factor £1.
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4.

References

[1] BAI, Z. and DEMMEL, J.W.
On a Block Implementation of Hessenberg Multishift QR Iteration.
Int. J. High Speed Comp., 1, pp. 97-112, 1989.

[2] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §7.5.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
JOB — CHARACTER*1. Input
On entry: indicates whether eigenvalues only or the Schur form T is required, as follows:
if JOB = 'E', then eigenvalues only are required,
if JOB = 'S', then the Schur form T is required.
Constraint: JOB = 'E' or 'S

COMPZ — CHARACTER*1. Input
On entry: indicates whether the Schur vectors are to be computed as follows:

if COMPZ = 'N', then no Schur vectors are computed (and the array Z is not
referenced);

if COMPZ = T, then the Schur vectors of H are computed (and the array Z is
initialized by the routine);

if COMPZ = 'V, then the Schur vectors of A are computed (and the array Z must
contain the matrix Q on entry).

Constraint: COMPZ = 'N', T or 'V'.

N — INTEGER. Input
On entry: n, the order of the matrix H.
Constraint: N 2 0.

ILO — INTEGER. Input
IHI - INTEGER. Input

On entry: if the matrix A has been balanced by FOSNHF (SGEBAL/DGEBAL), then ILO
and IHI must contain the values returned by that routine. Otherwise, ILO must be set to 1
and IHI to N.

Constraints: ILO 2 1 and min(ILO,N) < IHI < N.

H(LDH,*) — real array. Input/ Output
Note: the second dimension of the array H must be at least max(1,N).

Onentry: the n by n upper Hessenberg matrix H, as returned by FOSNEF
(SGEHRD/DGEHRD).

Onexit: if JOB = 'E/, then the array contains no useful information. If JOB = 'S', then H is
overwritten by the upper quasi-triangular matrix T from the Schur decomposition (the Schur
form) unless INFO > 0.

LDH — INTEGER. Input

On entry: the first dimension of the array H as declared in the (sub)program from which
FOSPEF (SHSEQR/DHSEQR) is called.

Constraint: LDH 2 max(1,N).
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8:

9:

10:

11:

12:

13:

14:

WR(*) — real array. Output
Note: the dimension of the array WR must be at least max (1,N).
WI(*) — real array. Output

Note: the dimension of the array WI must be at least max(1,N).

Onexit: the real and imaginary parts, respectively, of the computed eigenvalues, unless
INFO > 0 (in which case see Section 6). Complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having positive imaginary part first. The eigenvalues are
stored in the same order as on the diagonal of the Schur form T (if computed); see Section
8 for details.

Z(LDZ,*) — real array. Input/ Output

Note: the second dimension of the array Z must be at least max(1,N) if COMPZ = 'V' or
T and at least 1 if COMPZ = 'N'.

Onentry. if COMPZ = 'V', Z must contain the orthogonal matrix Q from the reduction to
Hessenberg form; if COMPZ = T, Z need not be set.

Onexit: if COMPZ = 'V' or T, Z contains the orthogonal matrix of the required Schur
vectors, unless INFO > 0.

Z is not referenced if COMPZ = 'N'.

LDZ — INTEGER. Inpur

On entry: the first dimension of the array Z as declared in the (sub)program from which
FOSPEF (SHSEQR/DHSEQR) is called.

Constraints: LDZ 2 1 if COMPZ = 'N',
LDZ 2 max(1,N) if COMPZ = 'V'or T.
WORK (*) — real array. Workspace
Note: the dimension of the array WORK must be at least max (1,N).

LWORK - INTEGER. Dummy
This parameter is currently redundant.

INFO — INTEGER. Ouwtput
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

The algorithm has failed to find all the eigenvalues after a total of 30x(IHI-ILO+1)
iterations. If INFO = i, elements 1,2,...JLO-1 and i+1,i+2,....,n of WR and WI contain the
real and imaginary parts of the eigenvalues which have been found.

Accuracy
The computed Schur factorization is the exact factorization of a nearby matrix H + E, where

lEN, = O(e)lHl,,

and ¢ is the machine precision.
If A; is an exact eigenvalue, and i,- is the corresponding computed value, then
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9.1.

Page 4

[A-A;] S g(_n_%
i~ 5 )

where c(n) is a modestly increasing function of n, and s, is the reciprocal condition number of
A;. The condition numbers s; may be computed by calling FOSQLF (STRSNA/DTRSNA).

Further Comments

The total number of floating-point operations depends on how rapidly the algorithm converges,
but is typically about:

7n® if only eigenvalues are computed;
10n* if the Schur form is computed;
20n* if the full Schur factorization is computed.

The Schur form T has the following structure (referred to as canonical Schur form).

If all the computed eigenvalues are real, T is upper triangular, and the diagonal elements of T are
the eigenvalues; WR(i) = t; fori = 1,2,...,n and WI(i) = 0.0.

If some of the computed eigenvalues form complex conjugate pairs, then T has 2 by 2 diagonal
blocks. Each diagonal block has the form

tii %Hl) _ (a ﬂ)
L Tivrin Y o

where Py < 0. The corresponding eigenvalues are axvyfy; WR(i) = WR(i+l) = o;
WI() = +‘V|B}’|, WI(i+1) = -WI(i).
The complex analogue of this routine is FOSPSF (CHSEQR/ZHSEQR).

Example

To compute all the eigenvalues and the Schur factorization of the upper Hessenberg matrix H,
where

0.3500 -0.1160 —0.3886 —0.2942
-0.5140 0.1225 0.1004 0.1126

0.0000 0.6443 -0.1357 -0.0977 |

0.0000 0.0000 0.4262 0.1632

See also the example for FOSNFF (SORGHR/DORGHR), which illustrates the use of this
routine to compute the Schur factorization of a general matrix.

H =

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8PEF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, LDH, LWORK, LDZ
PARAMETER (NMAX=8, LDH=NMAX, LWORK=NMAX, LD Z=NMAX)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, N
* .. Local Arrays ..
real H(LDH,NMAX), WI(NMAX), WORK(LWORK), WR(NMAX),
+ Z(LDZ,NMAX)
* .. External Subroutines ..
EXTERNAL shseqr, X04CAF
* .. Executable Statements ..
WRITE (NOUT,*) ’'FO8PEF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
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IF (N.LE.NMAX) THEN
* Read H from data file
READ (NIN,*) ((H(I,J),J=1,N),I=1,N)
* Calculate the eigenvalues and Schur factorization of H

CALL shseqr(’Schur form’,’Initialize 2’,N,1,N,H,LDH,WR,WI,Z,
+ LDZ, WORK, LWORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.0) THEN
WRITE (NOUT,*) ’'Failure to converge.’
ELSE
WRITE (NOUT,*) ’Eigenvalues’
WRITE (NOUT, 99999) (' (" ,WR(I),’,’ ,WI(I),")’,I=1,N)

*

Print Schur form

WRITE (NOUT, *)
IFAIL = 0

CALL X04CAF(’General’,’ ’,N,N,H,LDH,’Schur form’, IFAIL)
* Print Schur vectors

WRITE (NOUT, *)

IFAIL = 0
*
CALL XO04CAF('’General’,’ ’',N,N,Z,LDZ,’Schur vectors of H’,
+ IFAIL)
*
END IF
END IF
STOP

*

99999 FORMAT (1X,A,F8.4,A,F8.4,3)
END

9.2. Program Data

FO8PEF Example Program Data
4 :Value of N
0.3500 -0.1160 -0.3886 -0.2942
-0.5140 0.1225 0.1004 0.1126
0.0000 0.6443 -0.1357 -0.0977
0.0000 0.0000 0.4262 0.1632 :End of matrix H

9.3. Program Results
FOS8PEF Example Program Results

Eigenvalues
( 0.7995, 0.0000)
( —0.0994, 0.4008)
( —0.0994, -0.4008)
( -0.1007, 0.0000)

Schur form

1 2 3 4
.7995 -0.1144 0.0061 0.0335
.0000 -0.0994 0.2477 0.3474
.0000 -0.6483 -0.0994 0.2026
.0000 0.0000 0.0000 -0.1007

= W
[oNeNoNe]
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Schur
1 0
2 -0
3 -0
4 -0

vectors
1
.6551 0.
.5972 -0.
.3845 O
.2576 0.

of H

2
1036
5246

.5789

6156

FO08 — Least-squares and Eigenvalue Problems (LAPACK)

3 4
0.3450 0.6641
0.1706 0.5823
0.7143 -0.0821

-0.5845 0.4616

Page 6 (last)
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FOSPKF (SHSEIN/DHSEIN) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

1. Purpose

FOSPKF (SHSEIN/DHSEIN) computes selected left and/or right eigenvectors of a real upper
Hessenberg matrix corresponding to specified eigenvalues, by inverse iteration.

2. Specification
SUBROUTINE FO8PKF (JOB, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, VL,

1 1LDVL, VR, LDVR, MM, M, WORK, IFAILL, IFAILR, INFO)
ENTRY shsein (JOB, EIGSRC, INITV, SELECT, N, H, LDH, WR, WI, VL,

1 LDVL, VR, LDVR, MM, M, WORK, IFAILL, IFAILR, INFO)
INTEGER N, LDH, LDVL, LDVR, MM, M, IFAILL(*), IFAILR(*), INFO
real H(LDH, *), WR(*), WI(*), VL(LDVL, *), VR(LDVR, *), WORK( *)
LOGICAL SELECT(*)

CHARACTER*1  JOB, EIGSRC, INITV
The ENTRY statement enables the routine to be called by its LAPACK name.

3. Description

This routine computes left and/or right eigenvectors of a real upper Hessenberg matrix H,
corresponding to selected eigenvalues.

The right eigenvector x, and the left eigenvector y, corresponding to an eigenvalue A, are defined
by:
Hx = Axand y*H = 2" (or H"y = Ay).

Note that even though H is real, A, x and y may be complex. If x is an eigenvector corresponding
to a complex eigenvalue A, then the complex conjugate vector X is the eigenvector corresponding
to the complex conjugate eigenvalue A

The eigenvectors are computed by inverse iteration. They are scaled so that, for a real
eigenvector x, max(|x;|) = 1, and for a complex eigenvector, max(|Re(x;) |[+|Im(x,)|) = 1.

If H has been formed by reduction of a real general matrix A to upper Hessenberg form, then
eigenvectors of H may be transformed to eigenvectors of A by a call to FOSNGF
(SORMHR/DORMHR).

4. References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §7.6.1.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

5. Parameters
1:  JOB — CHARACTER*1. Input
On entry: indicates whether left and/or right eigenvectors are to be computed as follows:
if JOB = R', then only right eigenvectors are computed,;
if JOB = 'L/, then only left eigenvectors are computed;
if JOB = 'B', then both left and right eigenvectors are computed.
Constraint: JOB = R, L' or 'B'.
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2:

3:

4:

Page 2

EIGSRC — CHARACTER*1. Input

On entry: indicates whether the eigenvalues of H (stored in WR and WI) were found using
FOSPEF (SHSEQR/DHSEQR) as follows:

if EIGSRC = 'Q', then the eigenvalues of H were found using FOSPEF
(SHSEQR/DHSEQR ); thus if H has any zero sub-diagonal elements (and so is block
triangular), then the jth eigenvalue can be assumed to be an eigenvalue of the block
containing the jth row/column. This property allows the routine to perform inverse
iteration on just one diagonal block;

if EIGSRC = N, then no such assumption is made and the routine performs inverse
iteration using the whole matrix.

Constraint: EIGSRC = 'Q' or 'N'.

INITV — CHARACTER*1. Input

Onentry. indicates whether the user is supplying initial estimates for the selected
eigenvectors as follows:

if INITV = 'N', then no initial estimates are supplied;
if INITV = 'U’, then initial estimates are supplied in VL and/or VR.
Constraint: INITV = 'N' or 'U".

SELECT(*) — LOGICAL array. Input/ Output
Note: the dimension of the array SELECT must be at least max(1,N).

On entry: SELECT specifies which eigenvectors are to be computed. To obtain the real
eigenvector corresponding to the real eigenvalue WR(j), SELECT(j) must be set .TRUE..
To select the complex eigenvector corresponding to the complex eigenvalue
(WR(j),WI(j)) with complex conjugate (WR(+1),WI(j+1)), SELECT(j) and/or
SELECT (j+1) must be set .TRUE.; the eigenvector corresponding to the first eigenvalue in
the pair is computed.

On exit: if a complex eigenvector was selected as specified above, then SELECT (j) is set to
.TRUE. and SELECT(j+1) to .FALSE..

N — INTEGER. Input
On entry: n, the order of the matrix H.
Constraint: N 2 0.

H(LDH,*) — real array. Input
Note: the second dimension of the array H must be at least max(1,N).
On entry: the n by n upper Hessenberg matrix H.

LDH — INTEGER. Input

On entry: the first dimension of the array H as declared in the (sub)program from which
FOS8PKF (SHSEIN/DHSEIN) is called.

Constraint: LDH 2 max(1,N).

WR(*) — real array. Input/ Output
Note: the dimension of the array WR must be at least max(1,N).
WI(*) — real array. Input

Note: the dimension of the array WI must be at least max(1,N).

Onentry: the real and imaginary parts, respectively, of the eigenvalues of the matrix H.
Complex conjugate pairs of values must be stored in consecutive elements of the arrays. If
EIGSRC = 'Q', the arrays must be exactly as returned by FOSPEF (SHSEQR/DHSEQR).

On exit: some elements of WR may be modified, as close eigenvalues are perturbed slightly
in searching for independent eigenvectors.
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10: VL(LDVL,*) — real array. Input/ Output

Note: the second dimension of the array VL must be at least max(1,MM) if JOB = L' or
'‘B' and at least 1 if JOB = R'.

Onentry: if INITV = 'U'and JOB = L' or ‘B, VL must contain starting vectors for inverse
iteration for the left eigenvectors. Each starting vector must be stored in the same column or
columns as will be used to store the corresponding eigenvector (see below). If
INITV = 'N', VL need not be set.

Onexit: if JOB = L' or 'B', VL contains the computed left eigenvectors (as specified by
SELECT). The eigenvectors are stored consecutively in the columns of the array, in the
same order as their eigenvalues. Corresponding to each selected real eigenvalue is a real
eigenvector, occupying one column. Corresponding to each selected complex eigenvalue is
a complex eigenvector, occupying two columns: the first column holds the real part and the
second column holds the imaginary part.

VL is not referenced if JOB = R'.

11: LDVL - INTEGER. Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
FO8PKF (SHSEIN/DHSEIN) is called.

Constraints: LDVL 2 max(1,N) if JOB = L' or 'B’,
LDVL 2 1if JOB = R

12:  VR(LDVR,*) — real array. Input/ Output

Note: the second dimension of the array VR must be at least max(1,MM) if JOB = R' or
'‘B' and at least 1 if JOB = 'L'.

Onentry: if INITV = 'U'and JOB = R'or 'B', VR must contain starting vectors for inverse
iteration for the right eigenvectors. Each starting vector must be stored in the same column
or columns as will be used to store the corresponding eigenvector (see below). If
INITV = 'N', VR need not be set.

Onexit: if JOB = R' or 'B', VR contains the computed right eigenvectors (as specified by
SELECT). The eigenvectors are stored consecutively in the columns of the array, in the
same order as their eigenvalues. Corresponding to each selected real eigenvalue is a real
eigenvector, occupying one column. Corresponding to each selected complex eigenvalue is
a complex eigenvector, occupying two columns: the first column holds the real part and the
second column holds the imaginary part.

VR is not referenced if JOB = L'

13: LDVR - INTEGER. Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
FOSPKF (SHSEIN/DHSEIN) is called.

Constraints: LDVR 2 max(1,N) if JOB = R' or 'B',
LDVR 2 1if JOB = L'

14: MM - INTEGER. Input

Onentry: the number of columns in the arrays VL and/or VR. The actual number of
columns required, m, is obtained by counting 1 for each selected real eigenvector and 2 for
each selected complex eigenvector (see SELECT); 0 < m < n.

Constraint: MM 2 m.

15: M - INTEGER. Output
Onexit: m, the number of columns of VL and/or VR required to store the selected
eigenvectors.
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16:

17:

18:

19:

WORK((*) — real array. Workspace
Note: the dimension of the array WORK must be at least max (1,N*(N+2)).

IFAILL(*) — INTEGER array. Output

Note: the dimension of the array IFAILL must be at least max(1,MM) if JOB = 'L' or 'B'
and at least 1 if JOB = 'R'.

Onexit. if JOB = L' or 'B, then IFAILL (i) = 0 if the selected left eigenvector converged
and IFAILL(i) = j > 0 if the eigenvector stored in the ith column of VL (corresponding
to the jth eigenvalue) failed to converge. If the ith and (i+1)th columns of VL contain a
selected complex eigenvector, then IFAILL (i) and IFAILL (i+1) are set to the same value.

IFAILL is not referenced if JOB = R'.

IFAILR (*) — INTEGER array. Output

Note: the dimension of the array IFAILR must be at least max(1,MM) if JOB = 'R' or 'B'
and at least 1 if JOB = 'L'.

Onexit: if JOB = R' or 'B, then IFAILR(i) = 0 if the selected right eigenvector
converged and IFAILR(i) = j > O if the eigenvector stored in the ith column of VR
(corresponding to the jth eigenvalue) failed to converge. If the ith and (i+1)th columns of
VR contain a selected complex eigenvector, then IFAILR (i) and IFAILR (i+1) are set to
the same value.

IFAILR is not referenced if JOB = L'

INFO — INTEGER. Output
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

If INFO = i, then i eigenvectors (as indicated by the parameters IFAILL and/or IFAILR
above) failed to converge. The corresponding columns of VL and/or VR contain no useful
information.

Accuracy

Each computed right eigenvector x; is the exact eigenvector of a nearby matrix A + E;, such that
IE;ll = O(¢&)||All. Hence the residual is small:

lAx;=A;x;ll = O(&)lIAl.

However eigenvectors corresponding to close or coincident eigenvalues may not accurately span
the relevant subspaces.

Similar remarks apply to computed left eigenvectors.

Further Comments
The complex analogue of this routine is FOSPXF (CHSEIN/ZHSEIN).

Example
See the example for FOBNGF (SORMHR/DORMHR).
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FO8PSF (CHSEQR/ZHSEQR) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOS8PSF (CHSEQR/ZHSEQR) computes all the eigenvalues, and optionally the Schur
factorization, of a complex Hessenberg matrix or a complex general matrix which has been
reduced to Hessenberg form.

Specification

SUBROUTINE FO8PSF (JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, WORK,
1 LWORK, INFO)

ENTRY chsegqr (JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, WORK,
1 LWORK, INFO)

INTEGER N, ILO, IHI, LDH, LDZ, LWORK, INFO

complex H(LDH, *), W(*x), Z(LDZ,*), WORK(*)

CHARACTER*1  JOB, COMPZ
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine computes all the eigenvalues, and optionally the Schur factorization, of a complex
upper Hessenberg matrix H:

H = Z1Z",
where T is an upper triangular matrix (the Schur form of H), and Z is the unitary matrix whose
columns are the Schur vectors z;. The diagonal elements of T are the eigenvalues of H.

The routine may also be used to compute the Schur factorization of a complex general matrix A
which has been reduced to upper Hessenberg form H:

A = QHQ", where Q is unitary,

(92)T(Q2Z)".

In this case, after FOSNSF (CGEHRD/ZGEHRD) has been called to reduce A to Hessenberg
form, FOSNTF (CUNGHR/ZUNGHR ) must be called to form Q explicitly; Q is then passed to
FO8PSF, which must be called with COMPZ = V',

The routine can also take advantage of a previous call to FOSNVF (CGEBAL/ZGEBAL) which
may have balanced the original matrix before reducing it to Hessenberg form, so that the
Hessenberg matrix H has the structure:

Hll H12 HB
H22 H23
H33

where H,, and H; are upper triangular. If so, only the central diagonal block H,, (in rows and
columns i,, to i,;) needs to be further reduced to Schur form (the blocks H,, and H,; are also
affected). Therefore the values of i,, and i,; can be supplied to FOSPSF directly. Also, FOBNWF
(CGEBAK/ZGEBAK) must be called after this routine to permute the Schur vectors of the
balanced matrix to those of the original matrix. If FOSNVF has not been called however, then i,
must be set to 1 and i,; to n. Note that if the Schur factorization of A is required, FOSNVF must
not be called with JOB = 'S' or ‘B, because the balancing transformation is not unitary.
FO8PSF uses a multishift form of the upper Hessenberg QR algorithm, due to Bai and Demmel
[1]. The Schur vectors are normalized so that ||z;||, = 1, but are determined only to within a
complex factor of absolute value 1.
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4.

References

[1] BAI, Z. and DEMMEL, J.W.
On a Block Implementation of Hessenberg Multishift QR Iteration.
Int. J. High Speed Comp., 1, pp. 97-112, 1989.

[2] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §7.5.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989,

Parameters
JOB — CHARACTER¥*1. Input
On entry: indicates whether eigenvalues only or the Schur form T is required, as follows:
if JOB = 'E', then eigenvalues only are required;
if JOB = 'S, then the Schur form T is required.
Constraint: JOB = 'E' or 'S'".

COMPZ - CHARACTER*1. Input
On entry: indicates whether the Schur vectors are to be computed as follows:

if COMPZ = 'N, then no Schur vectors are computed (and the array Z is not
referenced);

if COMPZ = T, then the Schur vectors of H are computed (and the array Z is
initialized by the routine);

if COMPZ = 'V, then the Schur vectors of A are computed (and the array Z must
contain the matrix Q on entry).

Constraint: COMPZ = 'N', 'T' or 'V'".

N — INTEGER. Input
On entry: n, the order of the matrix H.
Constraint: N 2 0.

ILO — INTEGER. Input
IHI - INTEGER. Input

On entry. if the matrix A has been balanced by FOSNVF (CGEBAL/ZGEBAL), then ILO
and IHI must contain the values returned by that routine. Otherwise, ILO must be set to 1
and IHI to N.

Constraints: ILO 2 1 and min(ILO,N) < IHI < N.

H(LDH,*) — complex array. Input/ Output
Note: the second dimension of the array H must be at least max(1,N).

Onentry. the n by n upper Hessenberg matrix H, as returned by FOSNSF
(CGEHRD/ZGEHRD).

Onexit: if JOB = 'E, then the array contains no useful information. If JOB = 'S', then H is
overwritten by the upper triangular matrix T from the Schur decomposition (the Schur
form) unless INFO > 0.

LDH - INTEGER. Input

On entry: the first dimension of the array H as declared in the (sub)program from which
FO8PSF (CHSEQR/ZHSEQR) is called.

Constraint: LDH 2 max(1,N).
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8:

9:

10:

11:

12:

13:

W(*) — complex array. Output
Note: the dimension of the array W must be at least max (1,N).

On exit: the computed eigenvalues, unless INFO > 0 (in which case see Section 6). The
eigenvalues are stored in the same order as on the diagonal of the Schur form T (if
computed).

Z(LDZ,*) — complex array. Input/ Output

Note: the second dimension of the array Z must be at least max(1,N) if COMPZ = V' or
T and at least 1 if COMPZ = N

Onentry: if COMPZ = 'V', Z must contain the unitary matrix Q from the reduction to
Hessenberg form; if COMPZ = T, Z need not be set.

On exit: if COMPZ = 'V' or 'T, Z contains the unitary matrix of the required Schur vectors,
unless INFO > 0.

Z is not referenced if COMPZ = 'N'.

LDZ - INTEGER. Input

On entry: the first dimension of the array Z as declared in the (sub)program from which
FO8PSF (CHSEQR/ZHSEQR) is called.

Constraints: LDZ 2 1 if COMPZ = 'N',
LDZ 2 max(1,N) if COMPZ = 'V'or T.
WORK (*) — complex array. Workspace
Note: the dimension of the array WORK must be at least max (1,N).

LWORK - INTEGER. Dummy
This parameter is currently redundant.

INFO — INTEGER. QOutput
On exit: INFO = 0 unless the routine detects an error (see Section 6).

Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0
The algorithm has failed to find all the eigenvalues after a total of 30x(IHI-ILO+1)
iterations. If INFO = i, elements 1,2,.,JLO-1 and i+1,i+2,.,n of W contain the

eigenvalues which have been found.

Accuracy

The computed Schur factorization is the exact factorization of a nearby matrix H + E, where
lEN, = O(&)IH]l,,

and ¢ is the machine precision.

If A, is an exact eigenvalue, and A, is the corresponding computed value, then

c(n)€lH]|,

where c(n) is a modestly increasing function of n, and s; is the reciprocal condition number of
A;. The condition numbers s; may be computed by calling FOBQYF (CTRSNA/ZTRSNA).

A=Al <
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8.

9.1.

Page 4

Further Comments

The total number of real floating-point operations depends on how rapidly the algorithm
converges, but is typically about:

25n> if only eigenvalues are computed;
35n* if the Schur form is computed;
70n° if the full Schur factorization is computed.

The real analogue of this routine is FOSPEF (SHSEQR/DHSEQR).

Example

To compute all the eigenvalues and the Schur factorization of the upper Hessenberg matrix H,
where

-3.9700 — 5.0400i —1.1318 — 2.5693i —4.6027 — 0.1426i —1.4249 + 1.7330i

-5.4797 + 0.0000i 1.8585 — 1.5502i 4.4145 — 0.7638i —0.4805 — 1.1976i
0.0000 + 0.0000i 6.2673 + 0.0000i —0.4504 — 0.0290i —1.3467 + 1.6579i |’
0.0000 + 0.0000i 0.0000 + 0.0000; —-3.5000 + 0.0000i 2.5619 — 3.3708i

See also the example for FOSNTF (CUNGHR/ZUNGHR), which illustrates the use of this
routine to compute the Schur factorization of a general matrix.

H =

Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8PSF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDH, LWORK, LDZ
PARAMETER (NMAX=8,LDH=NMAX,LWORK=NMAX,LDZ=NMAX)
* .. Local Scalars ..
INTEGER I, IFAIL, INFO, J, N
* .. Local Arrays ..
cmnpkw H(LDH,NMAX), W(NMAX), WORK(LWORK), Z(LDZ, NMAX)
CHARACTER CLABS(1), RLABS(1l)
* .. External Subroutines ..
EXTERNAL X04DBF, chseqr
* .. Intrinsic Functions ..
INTRINSIC real, imag
* .. Executable Statements ..
WRITE (NOUT,*) ‘FO8PSF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN

* Read H from data file
READ (NIN,*) ((H(I,J),J=1,N),I=1,N)
* Calculate the eigenvalues and Schur factorization of H

CALL chseqr(’Schur form’,’Initialize 2’,N,1,N,H, 1DH,W,Z,LDZ,
+ WORK, LWORK, INFO)

WRITE (NOUT, *)
IF (INFO.GT.0) THEN
WRITE (NOUT,*) ’‘Failure to converge.’
ELSE
WRITE (NOUT,*) ’Eigenvalues’
WRITE (NOUT, 99999) (' (’,rad(W(I)),',',bnag(W(I)),')’,I=1,
+ N)
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* Print Schur form

WRITE (NOUT, *)

FOSPSF (CHSEQR/ZHSEQR)

IFAIL = 0
*
CALL X04DBF(’General’,’ ’,N,N,H,LDH,’Bracketed’,’F7.4',
+ ’Schur form’,’Integer’,RLABS,’'Integer’, CLABS, 80,
+ 0, IFAIL)
*
* Print Schur vectors

WRITE (NOUT, *)

IFAIL = 0
*
CALL X04DBF('’General’,’ ’,N,N,Z,LDZ,'Bracketed','F7.4',
+ ’Schur vectors of H’,’Integer’,RLABS,’Integer’,
+ CLABS, 80,0, IFAIL)
*
END IF
END IF
STOP
*
99999 FORMAT ((3X,4(A,F7.4,A,F7.4,A7,:)))
END
9.2. Program Data
FO8PSF Example Program Data
4 :Value of N
(-3.9700,-5.0400) (-1.1318,-2.5693) (-4.6027,-0.1426) (-1.4249, 1.7330)
(-5.4797, 0.0000) ( 1.8585,-1.5502) ( 4.4145,-0.7638) (-0.4805,-1.1976)
( 0.0000, 0.0000) ( 6.2673, 0.0000) (—-0.4504,-0.0290) (-1.3467, 1.6579)
( 0.0000, 0.0000) ( 0.0000, 0.0000) (-3.5000, 0.0000) (¢ 2.5619,-3.3708)

9.3. Program Results

FO8PSF Example Program Results

:End of matrix H

Eigenvalues
(-6.0004,-6.9998) (-5.0000, 2.0060) ( 7.9982,-0.9964) ( 3.0023,-3.9998)
Schur form
1 2 3 4
1 (-6.0004,-6.9998) (-0.2080, 0.4719) (-0.4829, 0.1768) ( 0.1301, 0.9052)
2 ( 0.0000, 0.0000) (-5.0000, 2.0060) (-0.6653, 0.2814) ( 0.0038, 0.2639)
3 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 7.9982,-0.9964) ( 0.2004, 1.0595)
4 ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 0.0000, 0.0000) ( 3.0023,-3.9998)
Schur vectors of H
1 2 3 4
1 ( 0.8457, 0.0000) ( 0.1380, 0.3602) (-0.2677,-0.1091) (-0.2213,-0.0582)
2 ( 0.2824,-0.3304) (-0.4612, 0.2075) ( 0.6846, 0.0000) ( 0.2927, 0.0320)
3 ( 0.0748, 0.2800) ( 0.7239, 0.0000) ( 0.5924,-0.0189) (-0.0229, 0.2005)
4 ( 0.0670, 0.0860) ( 0.2169, 0.1560) (-0.2745, 0.1454) ( 0.9057, 0.0000)
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FOSPXF (CHSEIN/ZHSEIN) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose

FOSPXF (CHSEIN/ZHSEIN) computes selected left and/or right eigenvectors of a complex
upper Hessenberg matrix corresponding to specified eigenvalues, by inverse iteration.

Specification

SUBROUTINE FO8PXF (JOB, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,

1 LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR,
2 INFO)

ENTRY chsein (JOB, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,

1 LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR,
2 INFO)

INTEGER N, LDH, LDVL, LDVR, MM, M, IFAILL(*), IFAILR(*), INFO
real RWORK ( *)

complex H(LDH, *), W(*), VL(LDVL, *), VR(LDVR, *), WORK(*)
LOGICAL SELECT (*)

CHARACTER*1  JOB, EIGSRC, INITV
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine computes left and/or right eigenvectors of a complex upper Hessenberg matrix H,
corresponding to selected eigenvalues.

The right eigenvector x, and the left eigenvector y, corresponding to an eigenvalue A, are defined
by:
Hx = Ax and y?H = A" (or Hy = Jy).

The eigenvectors are computed by inverse iteration. They are scaled so that
max(|Re(x;)|+|Im(x;)]) = 1.

If H has been formed by reduction of a complex general matrix A to upper Hessenberg form, then
the eigenvectors of H may be transformed to eigenvectors of A by a call to FOSNUF
(CUNMHR/ZUNMHR).

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §7.6.1.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
JOB — CHARACTER*1. Input
On entry: indicates whether left and/or right eigenvectors are to be computed as follows:
if JOB = R', then only right eigenvectors are computed;
if JOB = 'L, then only left eigenvectors are computed;
if JOB = 'B', then both left and right eigenvectors are computed.
Constraint. JOB = R, L' or 'B'.
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2:  EIGSRC — CHARACTER*1. Input

On entry: indicates whether the eigenvalues of H (stored in W) were found using FOSPSF
(CHSEQR/ZHSEQR) as follows:

if EIGSRC = 'Q,, then the eigenvalues of H were found using FOSPSF
(CHSEQR/ZHSEQR); thus if H has any zero sub-diagonal elements (and so is block
triangular), then the jth eigenvalue can be assumed to be an eigenvalue of the block
containing the jth row/column. This property allows the routine to perform inverse
iteration on just one diagonal block;

if EIGSRC = N, then no such assumption is made and the routine performs inverse
iteration using the whole matrix.

Constraint: EIGSRC = 'Q' or 'N.

3: INITV — CHARACTER*1. Input

Onentry: indicates whether the user is supplying initial estimates for the selected
eigenvectors as follows:

if INITV = 'N', then no initial estimates are supplied;
if INITV = 'U’, then initial estimates are supplied in VL and/or VR.
Constraint: INITV = 'N' or 'U".

4:  SELECT(*) — LOGICAL array. Input
Note: the dimension of the array SELECT must be at least max(1,N).

Onentry: SELECT specifies which eigenvectors are to be computed. To select the
eigenvector corresponding to the eigenvalue W (j), SELECT(j) must be set .TRUE..

5: N - INTEGER. Input
On entry: n, the order of the matrix H.
Constraint: N 2 0,

6: H(LDH,*) — complex array. Input
Note: the second dimension of the array H must be at least max(1,N).
On entry: the n by n upper Hessenberg matrix H.

7:  LDH - INTEGER. Input

On entry: the first dimension of the array H as declared in the (sub)program from which
FO8PXF (CHSEIN/ZHSEIN) is called.

Constraint: LDH 2 max(1,N).

8 W(*) — complex array. Input/ Output
Note: the dimension of the array W must be at least max(1,N).

Onentry: the eigenvalues of the matrix H. If EIGSRC = 'Q, the array must be exactly as
returned by FOSPSF (CHSEQR/ZHSEQR).

Onexit: the real parts of some elements of W may be modified, as close eigenvalues are
perturbed slightly in searching for independent eigenvectors.

9:  VL(LDVL,*) — complex array. Input/ Output
Note: the second dimension of the array VL must be at least max(1,MM) if JOB = L' or
'‘B' and at least 1 if JOB = R'.

Onentry: if INITV = 'U'and JOB = 'L' or 'B', VL must contain starting vectors for inverse
iteration for the left eigenvectors. Each starting vector must be stored in the same column as
will be used to store the corresponding eigenvector (see below). If INITV = 'N', VL need
not be set.
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10:

11:

12:

13:

14:

15:

16:

17:

On exit: if JOB = 'L' or 'B', VL contains the computed left eigenvectors (as specified by
SELECT). The eigenvectors are stored consecutively in the columns of the array, in the
same order as their eigenvalues.

VL is not referenced if JOB = R'.

LDVL - INTEGER. Input

On entry: the first dimension of the array VL as declared in the (sub)program from which
FOSPXF (CHSEIN/ZHSEIN) is called.

Constraints: LDVL 2 max(1,N) if JOB = L' or 'B',
LDVL 2 1if JOB = R\

VR(LDVR,*) — complex array. Input/ Output

Note: the second dimension of the array VR must be at least max(1,MM) if JOB = R'or
'B' and at least 1 if JOB = L'

Onentry: if INITV = "U'and JOB = R’ or 'B’, VR must contain starting vectors for inverse
iteration for the right eigenvectors. Each starting vector must be stored in the same column
as will be used to store the corresponding eigenvector (see below). If INITV = 'N', VR
need not be set.

On exit: if JOB = 'R’ or 'B', VR contains the computed right eigenvectors (as specified by
SELECT). The eigenvectors are stored consecutively in the columns of the array, in the
same order as their eigenvalues.

VR is not referenced if JOB = L'

LDVR - INTEGER. Input

On entry: the first dimension of the array VR as declared in the (sub)program from which
FOSPXF (CHSEIN/ZHSEIN) is called.

Constraints: LDVR 2 max(1,N) if JOB = R'or 'B',
LDVR 2 1ifJOB = L'

MM - INTEGER. Input

Onentry: the number of columns in the arrays VL and/or VR. The actual number of
columns required, m, is equal to the number of selected eigenvectors (see SELECT);
0<m<n

Constraint: MM 2 m.

M - INTEGER. Output
On exit: m, the number of selected eigenvectors.

WORK (*) — complex array. Workspace
Note: the dimension of the array WORK must be at least max (1,N*N).

RWORK(*) — real array. Workspace
Note: the dimension of the array RWORK must be at least max(1,N).

IFAILL(*) — INTEGER array. Output
Note: the dimension of the array IFAILL must be at least max(1,MM) if JOB = L' or 'B'
and at least 1 if JOB = R'.

Onexit: if JOB = 'L' or 'B', then IFAILL (i) = O if the selected left eigenvector converged
and IFAILL (i) = j > 0 if the eigenvector stored in the ith column of VL (corresponding
to the jth eigenvalue) failed to converge.

IFAILL is not referenced if JOB = R'.
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18: IFAILR(*) — INTEGER array. Output

Note: the dimension of the array IFAILR must be at least max(1,MM) if JOB = R' or 'B'
and at least 1 if JOB = L'

Onexit: if JOB = R' or 'B', then IFAILR(i) = O if the selected right eigenvector
converged and IFAILR(i{) = j > O if the eigenvector stored in the ith column of VR
(corresponding to the jth eigenvalue) failed to converge.

IFAILR is not referenced if JOB = 'L'.

19: INFO - INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO > 0

If INFO = i, then i eigenvectors (as indicated by the parameters IFAILL and/or IFAILR
above) failed to converge. The corresponding columns of VL and/or VR contain no useful
information.

7. Accuracy

Each computed right eigenvector x; is the exact eigenvector of a nearby matrix A + E ;» such that
IE.ll = O(e)|lA|l. Hence the residual is small:

lAx;=A;x;| = O(€)IAl.

However eigenvectors corresponding to close or coincident eigenvalues may not accurately span
the relevant subspaces.

Similar remarks apply to computed left eigenvectors.

8. Further Comments
The real analogue of this routine is FOSPKF (SHSEIN/DHSEIN).

9. Example
See the example for FOSNUF (CUNMHR/ZUNMHR ).
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FO0S8QFF (STREXC/DTREXC) - NAG Fortran Library Routine Document

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details. The routine name may be precision-dependent.

Purpose
FOS8QFF (STREXC/DTREXC) reorders the Schur factorization of a real general matrix.
Specification
SUBROUTINE FOSQFF (COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK, INFO)
ENTRY strexc (COMPQ, N, T, LDT, Q, LDQ, IFST, ILST, WORK, INFO)
INTEGER N, LDT, LDQ, IFST, ILST, INFO
real T(LDT,*), Q(LDQ, *), WORK(*)

CHARACTER*1  COMPQ
The ENTRY statement enables the routine to be called by its LAPACK name.

Description

This routine reorders the Schur factorization of a real general matrix A = QTQ7", so that the
diagonal element or block of T with row index IFST is moved to row ILST.

The reordered Schur form T is computed by an orthogonal similarity transformation: T = ZTTZ
Optionally the updated matrix Q of Schur vectors is computed as 0 = 0z, giving A = QTQ

References

[1] GOLUB, G.H. and VAN LOAN, C.F.
Matrix Computations, §7.6.
Johns Hopkins University Press, Baltimore, Maryland, (2nd Edition) 1989.

Parameters
COMPQ — CHARACTER*1. Input
On entry: indicates whether the matrix Q of Schur vectors is to be updated, as follows:
if COMPQ = 'V, then the matrix Q of Schur vectors is updated;
if COMPQ = 'N', then no Schur vectors are updated.
Constraint: COMPQ = 'V' or 'N". ‘

N — INTEGER. Input
On entry: n, the order of the matrix T.
Constraint: N 2 0.

T(LDT,*) — real array. Input/ Output
Note: the second dimension of the array T must be at least max(1,N).

On entry: the n by n upper quasi-triangular matrix T in canonical Schur form, as returned by
FOSPEF (SHSEQR/DHSEQR).

Onexit: T is overwritten by the updated matrix T. See also Section 8.

LDT - INTEGER. Input

On entry: the first dimension of the array T as declared in the (sub)program from which
FO8QFF (STREXC/DTREXC) is called.

Constraint. LDT 2 max(1,N).
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51 Q(LDQ,*) — real array. Input/ Output

Note: the second dimension of the array Q must be at least max(1,N) if COMPQ = 'V'and
at least 1 if COMPQ = N,

Onentry: if COMPQ = 'V', Q must contain the n by n orthogonal matrix Q of Schur
vectors.

Onexit: if COMPQ = 'V', Q contains the updated matrix of Schur vectors.
Q is not referenced if COMPQ = 'N..

6: LDQ - INTEGER. Input

On entry: the first dimension of the array Q as declared in the (sub)program from which
FO8QFF (STREXC/DTREXC) is called.

Constraints: LDQ 2 max(1,N) if COMPQ = 'V',
LDQ 2 1 if COMPQ = 'N.

7: IFST — INTEGER. Input/ Output
8: ILST — INTEGER. Input/ Output

On entry: IFST and ILST must specify the reordering of the diagonal elements or blocks of
T. The element or block with row index IFST is moved to row ILST by a sequence of
exchanges between adjacent elements or blocks.

On exit: if IFST pointed to the second row of a 2 by 2 block on entry, it is changed to point
to the first row. ILST always points to the first row of the block in its final position (which
may differ from its input value by + 1).

Constraints: 1 £ IFST < N,
1 < ILST £ N.

9:  WORK(*) — real array. Workspace
Note: the dimension of the array WORK must be at least max(1,N).

10: INFO — INTEGER. Output
Onexit: INFO = 0 unless the routine detects an error (see Section 6).

6. Error Indicators and Warnings
INFO < 0

If INFO = —i, the ith parameter had an illegal value. An explanatory message is output, and
execution of the program is terminated.

INFO =1

Two adjacent diagonal elements or blocks could not be successfully exchanged. This error
can only occur if the exchange involves at least one 2 by 2 block; it implies that the problem
is very ill-conditioned, and that the eigenvalues of the two blocks are very close. On exit, T
may have been partially reordered, and ILST points to the first row of the current position
of the block being moved; Q (if requested) is updated consistently with T,

7. Accuracy
The computed matrix T is exactly similar to a matrix T + E, where
lEN, = O(8)ITI,,
and € is the machine precision.

Note that if a 2 by 2 diagonal block is involved in the re-ordering, its off-diagonal elements are
in general changed; the diagonal elements and the eigenvalues of the block are unchanged unless
the block is sufficiently ill-conditioned, in which case they may be noticeably altered. It is
possible for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of complex
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eigenvalues to become purely real. The values of real eigenvalues however are never changed by
the re-ordering.

8. Further Comments
The total number of floating-point operations is approximately 6nr if COMPQ = 'N', and 12nr if
COMPQ = 'V', where r = |IFST-ILST].
The input matrix T must be in canonical Schur form, as is the output matrix T. This has the
following structure.

If all the computed eigenvalues are real, T is upper triangular and its diagonal elements are the
eigenvalues.

If some of the computed eigenvalues form complex conjugate pairs, then T has 2 by 2 diagonal
blocks. Each diagonal block has the form

(tﬁ %ﬂl) _ (a )
Listi Livrist Y @

where By < 0. The corresponding eigenvalues are atvpy.
The complex analogue of this routine is FOBQTF (CTREXC/ZTREXC).

9. Example

To reorder the Schur factorization of the matrix T so that the 2 by 2 block with row index 2 is
moved to row 1, where

0.80 -0.11 0.01 0.03

0.00 -0.10 0.25 035

0.00 -0.65 -0.10 0.20}°

0.00 0.00 0.00 -0.10

T =

9.1. Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read
the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this
manual, the results produced may not be identical for all implementations.

* FO8QFF Example Program Text
* Mark 16 Release. NAG Copyright 1992.
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER (NIN=5, NOUT=6)
INTEGER NMAX, LDT, LDQ
PARAMETER (NMAX=8, LDT=NMAX, LDQ=1)
* .. Local Scalars ..
INTEGER I, IFAIL, IFST, ILST, INFO, J, N
* .. Local Arrays ..
real Q(LDQ,1), T(LDT,NMAX), WORK(NMAX)
* .. External Subroutines
EXTERNAL strexc, X04CAF
* .. Executable Statements
WRITE (NOUT,*) ’'F08QFF Example Program Results’
* Skip heading in data file

READ (NIN, *)
READ (NIN,*) N
IF (N.LE.NMAX) THEN
* Read T from data file
READ (NIN,*) ((T(I,J),J=1,N),I=1,N)
READ (NIN,*) IFST, ILST

* Reorder the Schur factorization T

CALL Strexc(’No update’,N,T,LDT,Q,LDQ, IFST, ILST, WORK, INFO)
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* Print reordered Schur form

WRITE (NOUT, *)

IFAIL = 0
*
CALL XO04CAF(’General’,’ ’,N,N,T,LDT,’Reordered Schur form’,
+ IFAIL)
*
END IF
STOP
END

9.2. Program Data

FO8QFF Example Program Data
4 :Value of N
0.80 -0.11 0.01 0.03
0.00 -0.10 0.25 0.35
0.00 -0.65 -0.10 0.20
0.00 0.00 0.00 -0.10 :End of matrix T
2 1 :Values of IFST and ILST

9.3. Program Results
FO8QFF Example P<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>